Skip to main content

Professor Ebashi’s impact on the study of the regulation of striated muscle contraction

  • Chapter
Muscle Physiology and Biochemistry

Part of the book series: Molecular and Cellular Biochemistry ((DMCB,volume 31))

  • 289 Accesses

Abstract

The field of striated muscle regulation has changed tremendously over the last forty years. Many of the problems solved by Dr. Ebashi and by those stimulated by him offer new challenges for future generations of scientists. Many questions remain to be solved, and it should give particular pleasure to Dr. Ebashi to see how the seeds sown by him and his colleagues have now grown into a beautiful tree that bears rich fruit at present and will continue to do so for a long time in the future. (Mol Cell Biochem 190: 5-8, 1999)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebashi S, Endo M: Calcium ion and muscle contraction. [Review]. Prog Biophys Mol Biol 18: 123–183, 1968

    Article  PubMed  CAS  Google Scholar 

  2. Ebashi S: Third component participating in the precipitation of ‘natural actomyosin’. Nature 200: 1010, 1963

    Article  PubMed  CAS  Google Scholar 

  3. Ebashi S, Ebashi F: A new protein component participating in the superprecipitation of myosin. J Biochem 55: 604–613, 1964

    PubMed  CAS  Google Scholar 

  4. Weber A: On the role of calcium in the activity of adenosine-5′-triphosphate hydrolysis by actomyosin. J Biol Chem 234: 2764–2769, 1959

    PubMed  CAS  Google Scholar 

  5. Ebashi S: Calcium binding and relaxation in the actomyosin system. J Biochem 48: 150–151, 1960

    CAS  Google Scholar 

  6. Ebashi S, Ebashi F, Kodama A: Troponin as the Ca2+-receptive protein in the contractile system. J Biochem 62: 137–138, 1967

    PubMed  CAS  Google Scholar 

  7. Ebashi S, Wakabayashi T, Ebashi E: Troponin and its components. J Biochem 69: 441–445, 1971

    PubMed  CAS  Google Scholar 

  8. Hartshorne DL, Perry SV, Schaub MC: A protein factor inhibiting the magnesium-activated adenosine triphosphatase of desensitized actomyosin. Biochem J 104: 907–913, 1967

    PubMed  CAS  Google Scholar 

  9. Hartshorne DJ, Mueller H: Fractionation of troponin into two distinct proteins. Biochem Biophys Res Comm 31: 647–653, 1968

    Article  PubMed  CAS  Google Scholar 

  10. Greaser ML, Gergely J: Reconstitution of troponin activity from three protein components. J Biol Chem 246: 4226–4233, 1971

    PubMed  CAS  Google Scholar 

  11. Greaser ML, Gergely J: Purification and properties of the components from troponin. J Biol Chem 248: 2125–2133, 1973

    PubMed  CAS  Google Scholar 

  12. Ebashi S: Separation of troponin into its three components. J Biochem 72: 787–790, 1972

    PubMed  CAS  Google Scholar 

  13. Perry SV, Cole HA, Head JF, Wilson FL: Localization and mode of action of the inhibitory protein component of the troponin complex. Cold Spring Harbor. Symp. Quant Biol 37: 251–262, 1972

    Article  Google Scholar 

  14. Potter JD, Gergely J: The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 250: 4628–4633, 1975

    PubMed  CAS  Google Scholar 

  15. Kretsinger RH, Nockolds CE: Carp muscle calcium binding protein. II. Structure determination and general description. J Biol Chem 248: 3313–3326, 1973

    CAS  Google Scholar 

  16. Collins JH, Potter JD, Horn MJ, Wilshire G, Jackman N: The amino acid sequence of rabbit skeletal muscle troponin C: Gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett 36: 268–272, 1973

    Article  PubMed  CAS  Google Scholar 

  17. Grabarek Z, Drabikowski W, Leavis PC, Rosenfeld SS, Gergely L: Proteolytic fragments of troponin C. Interactions with the other troponin subunits and biological activity. J Biol Chem 256: 13121–13127, 1981

    CAS  Google Scholar 

  18. Kretsinger RH, Barry CD: The predicted structure of the calcium-binding component of troponin. Biochim Biophys Acta 405: 40–52, 1975

    Article  PubMed  CAS  Google Scholar 

  19. Sundaralingam M, Bergstrom R, Strasburg G, Rao ST, Roychowdhury P, et al.: Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227: 945–948, 1985

    Article  PubMed  CAS  Google Scholar 

  20. Herzberg O, James MN: Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313: 653–659, 1985

    Article  PubMed  CAS  Google Scholar 

  21. Herzberg O, Moult J, James MN: A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261: 2638–2644, 1986

    CAS  Google Scholar 

  22. Fujimori K, Sorenson M, Herzberg O, Moult J, Reinach FC: Probing the calcium-induced conformational transition of troponin C with site-directed mutants. Nature 345: 182–184, 1990

    Article  PubMed  CAS  Google Scholar 

  23. Grabarek Z, Tan RY, Wang J, Tao T, Gergely J: Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature 345: 132–135, 1990

    Article  PubMed  CAS  Google Scholar 

  24. Wang Z, Gergely J, Tao T: Characterization of the Ca2+-triggered conformational transition in troponin C. Proc Natl Acad Sci USA 89: 11814–11817, 1992

    Article  PubMed  CAS  Google Scholar 

  25. Slupsky CM, Sykes BD: NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34: 15953–15964, 1995

    Article  PubMed  CAS  Google Scholar 

  26. Gagné SM, Li MX, McKay RT, Sia SK, Spyracopoulos L, et al.: The calcium induced structural change in that triggers skeletal and cardiac muscle contraction. Biophys J 72: A332, 1997

    Google Scholar 

  27. Tao T, Gong BJ, Leavis PC: Calcium-induced movement of troponin-1 relative to actin in skeletal muscle thin filaments. Science 247: 1339–1341, 1990

    Article  PubMed  CAS  Google Scholar 

  28. Syska H, Wilkinson JM, Grand RJ, Perry SV: The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153: 375–387, 1976

    PubMed  CAS  Google Scholar 

  29. Leszyk J, Grabarek Z, Gergely J, Collins JH: Characterization of zero-length cross-links between rabbit skeletal muscle troponin C and troponin I: Evidence for direct interaction between the inhibitory region of troponin I and the NH2-terminal, regulatory domain of troponin C. Biochemistry 29: 299–304, 1990

    Article  PubMed  CAS  Google Scholar 

  30. Pearlstone JR, Smillie LB: Evidence for two-site binding of troponin I inhibitory peptides to the N and C domains of troponin C. Bio chemistry 34: 6932–6940, 1995

    CAS  Google Scholar 

  31. Pearlstone JR, Sykes BD, Smillie LB: Interactions of structural Cdomain and regulatory N-domains of troponon C with repeated sequence motifs in troponin I. Biophys J 72: A331, 1997

    Google Scholar 

  32. Kobayashi T, Tao T, Gergely J, Collins J: Structure of the troponin complex. Implications of photocross-linking of troponin I to troponin C thiol mutants. J Biol Chem 269: 5725–5729, 1994

    CAS  Google Scholar 

  33. Jha PK, Mao C, Sarkar S: Photo-cross-linking of rabbit skeletal troponin I deletion mutants with troponin C and its thiol mutants: The inhibitory region enhances binding of troponin I fragments to troponin C. Biochemistry 35: 11026–11035, 1996

    Article  PubMed  CAS  Google Scholar 

  34. Farah CS, Miyamoto CA, Ramos C, Dasilva A, Quaggio RB, et al.: Structural and regulatory functions of the NH2-and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269: 5230–5240, 1994

    PubMed  CAS  Google Scholar 

  35. Luo Y, Wu J-L, Gergely J, Tao T: Troponin T and Ca2+ dependence of the distance between Cys48 and Cysl33 of troponin I in the ternary troponin complex and reconstituted thin filaments. Biochemistry 36: 11027–11035, 1997

    Article  PubMed  CAS  Google Scholar 

  36. Meador WE, Means AR, Quiocho FA: Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257: 1251–1255, 1992

    Article  PubMed  CAS  Google Scholar 

  37. Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A: Solution structure of a calmodulin-target peptide complex by multi dimensional NMR. Science 256: 632–638, 1992

    Article  PubMed  CAS  Google Scholar 

  38. Gong B-J, Wang Z, Tao T, Gergely J: Troponin C remains extended in the ternary trroponin complex. Biophys J 66: A346, 1994

    Google Scholar 

  39. Olah GA, Rokop SE, Wang C-LA, Blechner SL, Trewhella J: Troponin I encompasses an extended troponin C in the Ca2+-bound complex — a small-angle X-ray and neutron scattering study. Biochemistry 33: 8233–8239, 1994

    Article  PubMed  CAS  Google Scholar 

  40. Olah GA, Trewhella J: A model structure of the muscle protein complex 4-Ca2+-troponin C-troponin I derived from small-angle scattering data-implications for regulation. Biochemistry 33: 12800–12806, 1994

    Article  PubMed  CAS  Google Scholar 

  41. Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maeda, Y: Crystal structure of troponin C in complex with troponin I fragment at 2.3 A resolution. Proc Natl Acad Sci (USA) 95: 4747–4852, 1998

    Article  Google Scholar 

  42. Ohtsuki I: Molecular arrangement of troponin-T in the thin filament. J Biochem 86: 491–497, 1979

    PubMed  CAS  Google Scholar 

  43. Potter JD, Sheng Z, Pan BS, Zhao J: A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. J Biol Chem 270: 2557–2562, 1995

    Article  PubMed  CAS  Google Scholar 

  44. Schaertl S, Lehrer SS, Geeves MA: Separation and characterization of the two functional regions of troponin involved in muscle thin filament regulation. Biochemistry 34: 15890–15894, 1995

    Article  PubMed  CAS  Google Scholar 

  45. Potter JD, Gergely J: Troponin tropomyosin and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13: 2697–2703, 1974

    Article  PubMed  CAS  Google Scholar 

  46. Lorenz M, Poole KJV, Popp D, Rosenbaum G, Holmes KC: An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol 246: 108–119, 1995

    Article  PubMed  CAS  Google Scholar 

  47. Poole KJV, Evans G, Rosenbaum G, Lorenz M, Holmes KC: The effect of crossbridges on the calcium sensitivity of the structural change in the regulated thin filament. Biophys J 68: A365, 1995

    Google Scholar 

  48. Holmes KC: The actomyosin interaction and its control by tropo myosin. Biophys J 68: S2–S7, 1995

    Google Scholar 

  49. Rayment J, Holden HM, Whittaker M, Yohn CB, Lorenz M et al.: Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65, 1993

    Article  PubMed  CAS  Google Scholar 

  50. Bremel RD, Murray JM, Weber A: Manifestations of cooperative behavior in the reglated actin filament during actin activated ATP hydrolysis in the presence of calcium. Cold Spring Harbor. Symp Quant Biol 37: 267–275, 1972

    Article  Google Scholar 

  51. McKillop D, Geeves MA: Regulation of the interaction between actin and myosin subfragment-1 — evidence for 3 states of the thin filament. Biophys J 65: 693–701, 1993

    Article  PubMed  CAS  Google Scholar 

  52. Leavis PC, Gergely J: Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem 16: 235–305, 1984

    Article  PubMed  CAS  Google Scholar 

  53. Ohtsuki J, Maruyama K, Ebashi S: Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Adv Prot Chem 38: 1–67, 1986

    Article  CAS  Google Scholar 

  54. Zot AS, Potter JD: Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann Rev Biophys Biophys Chem 16: 535–559, 1987

    Article  CAS  Google Scholar 

  55. Chalovich JM: Actin mediated regulataion of muscle contraction. Pharmac Ther 55: 95–148, 1992

    Article  CAS  Google Scholar 

  56. Farah CS, Reinach FC: The troponin complex and regulation of muscle contraction. [Review]. FASEB J 9: 755–767, 1995

    PubMed  CAS  Google Scholar 

  57. Tobacman LS: Thin Filament-mediated Regulation of Cardiac Contraction [Review]. Ann Rev Physiol 58: 447–481, 1996

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gergely, J. (1999). Professor Ebashi’s impact on the study of the regulation of striated muscle contraction. In: Imai, S., Ohtsuki, I., Endo, M. (eds) Muscle Physiology and Biochemistry. Molecular and Cellular Biochemistry, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5543-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5543-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7534-0

  • Online ISBN: 978-1-4615-5543-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics