Skip to main content

Influence of Metal Ions on the Crystal Growth of Calcium Phosphates

  • Chapter
Calcium Phosphates in Biological and Industrial Systems

Abstract

The development of living organisms and of mammals in particular, is closely related to the development of mineralization, i.e., to the mechanism of formation of hard tissue. The main inorganic chemical component of bone and teeth is calcium phosphate which is deposited through careful control by the development of a slight excess of the solubility product.1 In the natural environment, the precipitation of calcium phosphates is part of the mechanism for the control of phosphate accumulation in lakes and estuaries in which there is a continuous influx of phosphates due to irrigation runoff.2,3 Moreover, the removal of 85–90 % of the inorganic orthophosphates contained in wastewater may be achieved by precipitation of calcium phosphates by lime.4 In addition, the formation of tenacious scale deposits of calcium phosphates has also been reported in boilers and industrial installations using recycled, chemically treated water.5–7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. da Silva JJRF, Williams RJP. The Biological Chemistry of the Elements, Clarendon Press-Oxford, Oxford 1994.

    Google Scholar 

  2. Phosphates in Detergents and the Eutrophication of America’s Waters, In 23rd Report, Communications on Government Operations, US Printing Office, Washington DC.

    Google Scholar 

  3. Brown WE. Solubilities of phosphates and other sparingly soluble compounds, In Environmental Phosphorus Handbook Griffith EJ, Beeton A, Spencer JM, Mitchell DT (Eds.), Wiley and Sons, New York 1973.

    Google Scholar 

  4. Ferguson JF, Jenkins D, Eastman J. Calcium phosphate precipitation. In 44th Annual Conference of the Water Pollution Control Federation, Ser. 5(2) Oct. 4 (1971).

    Google Scholar 

  5. Varsanik RG. The nature and control of calcium orthophosphate depositions in cooling water systems. Paper 142, Corrosion 75 NACE Toronto, Canada 1975.

    Google Scholar 

  6. The NALCO Water Handbook, Kemmer FN, Ed. Boiler water treatment 2nd Edition, MacGraw Hill, New York 1988.

    Google Scholar 

  7. BETZ Handbook of Industrial Water Conditioning, Boiler deposits: Occurence and control, 8th Edition, Betz lab Inc. Trevose, PA. 1982.

    Google Scholar 

  8. Hay RW. Bioinorganic Chemistry, Ellis Horwood Ltd, Chichester, 1987.

    Google Scholar 

  9. McDowell H, Gregory TM, Brown WE. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15,25 and 37 °C. J Res Nat Bur Stand 1977;81 A:273–281

    Google Scholar 

  10. Gregory TM, Moreno EC, Patel JM, Brown WE, Solubility of Ca3(PO4)2 in the system Ca(OH)2-H3PO4-H2O at 5,15,25 and 37 °C. J Res Nat Bur Stand 1974;78A:667–674

    Google Scholar 

  11. Moreno EC, Brown WE, Osborn G. Stability of dicalcium phosphate dihydrate in aqueous solutions and solubility of octacalcium phosphate. Soil Sci 1960;24:99–102

    Google Scholar 

  12. McDowell H. Solubility of CaHPO4 and ion pair formation Ph. D. Thesis, Howard University, Washington DC 1968.

    Google Scholar 

  13. Patel JM, Gregory TM, Brown WE. Solubility of CaHPO4.2H2O in the quaternary system Ca(OH)2-H3PO4-NaCl-H2O at 25 °C. J Res Nat Bur Stand 1974;78A:675–681

    Google Scholar 

  14. Smith RM, Martell AE. Critical Stability Constants v.4: Inorganic Complexes, Plenum Press New York 1981.

    Google Scholar 

  15. Nancollas GH. Interactions in Electrolyte Solutions, Elsevier, Amsterdam, 1966.

    Google Scholar 

  16. Davies CW. Ion Association, Butterworth, London, 1962.

    Google Scholar 

  17. Lewis GN, Randall M. Thermodynamics, Revised by Pitzer JS and Brewer L, 2nd Ed. McGraw Hill, New York 1961.

    Google Scholar 

  18. Robinson RA, Stokes RH. Electrolyte Solutions, 2nd ed. Butterworth, London 1965.

    Google Scholar 

  19. Garrels RM, Tomson ME, A chemical model for seawater at 25 °C and 1 atm total pressure, Am J Science, 1962,260:57–66

    Google Scholar 

  20. Pitzer KS In Thermodynamic modeling of geological materials: Mineral, fluids and melts. Carmichael ISE, Engster HP eds. Reviews in Mineralogy, Miner Soc America, Washington DC, v. 17.

    Google Scholar 

  21. Wolery TJ, Jackson KJ. Activity coefficients in aqueous salt solutions: hydration theory equations systems II, Melchior DC, Basset RL Eds. ACS, Washington DC 1990.

    Google Scholar 

  22. Ananthaswamy J, Atkinson G, Thermodynamics of concentrated electrolyte mixtures. S. A review of the thermodynamic properties of aqueous calcium chloride in temperature range 273.15-373.15, J Chem Eng Data., 1985;30:120–128

    Google Scholar 

  23. Nancollas GH, Amjad Z, Koutsoukos P. Calcium phosphates-Speciation, solubility and kinetics considerations, In ACS Symposium Series No. 93, Chemical Modeling in Aqueous Systems, Jenne EA, Ed., ACS, Washington DC 1979.

    Google Scholar 

  24. Stumm W, Morgan JJ. Aquatic Chemistry 2nd Ed. J. Wiley, New York.

    Google Scholar 

  25. Morel FMM, Principles of Aquatic Chemistry, J. Wiley New York 1983.

    Google Scholar 

  26. Papelis C, Hayes KF, Leckie JO. HYDRAQL: A program for the computation of chemical equilibrium composition of aqueous batch systems including surface-complexation modeling of ion adsorption at the oxide/solution interface Teh. Rep. 306 Stanford Univ. Stanford C A 1988.

    Google Scholar 

  27. Nordstrom DK, Plummer LN, Wigley TML, Wolery TJ, Ball JW, Jenne EA, Basset RL, Crerar DA, Florence TM, Mattigod SV, McDuff RE, Morel F, Reddy MM, Sposito G, Thrailkill J. A comparison of computerized chemical models for equilibrium calculations in aqueous systems, In Chemical Modeling in Aqueous Systems, ACS Symposium Series No. 93 (E.A. Jenne Ed.), ACS, Washington D.C. 1979.

    Google Scholar 

  28. Van Breeeman N. Calculation of ionic activities in natural waters Geochim. Cosmochim. Acta 1973;37:101–107

    Google Scholar 

  29. Mattigod SV, Sposito G. Chemical modeling of trace metal equilibria in contaminated soil solutions using the computer program GEOCHEM in Chemical Modelling in Aqueous Systems ACS Symposium Series No. 93 (EA Jenne ed.), ACS, Washington D.C. 1979.

    Google Scholar 

  30. Pol T, Nancollas GH. EQUIL-A computational method for the calculation of solution equilibria, Anal Chem 1972;44:1940–1950

    Google Scholar 

  31. Eanes ED, Termine JD. Calcium in mineralized tissues, Met. Ions in Biol. 6 Calcium in Biology, TG Spiro, Ed., J. Wiley, 201–233 (1983).

    Google Scholar 

  32. Posner AS, Perloff A, Diorio AF. Refinement of hydroxyapatite structure, Acta Crystallogr 1958;11:308–309

    Google Scholar 

  33. Eanes ED, Posner AS. In Biological Calcification — Cellular and Molecular Aspects, H Schrarer, Ed. North Holland, Amsterdam 1970.

    Google Scholar 

  34. Narasaraju TSB, Phebe DE. Some Physico-chemical aspects of hydroxylapatite, J Mater Sci 1996;31:1–21

    Google Scholar 

  35. Klement R, Zureda F. Basic phosphates of bivalent metals. V. Phosphate and hydroxyapatite of cadmium, Z. Anorg Allgem Chem 1940;245:229–235

    Google Scholar 

  36. Termine JD, Lundy DR. Hydroxide and carbonate in rat bone mineral and its synthetic analogues, Calcif. Tissue Res 1973;13:73

    Google Scholar 

  37. Suzuki M. Physicochemical nature of hard tissue VIII. Determination of carbonate ions in the inorganic comporent of hard tissue by infrared reflectance spectroscopy, Hirosaki Iyaku 1973;24:450–456

    Google Scholar 

  38. Knappwost A. Fluoride-hydroxyl substitution in hydroxyapatite as an ion-exchange reaction and its use in the microanalysis of fluoride, Odontologisk Rev 1957;8:30

    Google Scholar 

  39. Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. Inhibiting effect of zinc on hydroxylapatite crystallization, J Inorg Biochemistry 1995;58:49–58

    Google Scholar 

  40. Samachon J, Dennis H, Fowler R, Schmitz A. The reaction of 65Zn with the surfaces of bone and bone mineral, Biochim Biophys Acta 1967; 148:767–773

    Google Scholar 

  41. Samachon J, Schmitz A. Slow reactions of calcium and zinc ions with the surfaces of bone powder and inorganic bone, Biochim Biophys Acta 1969;192:231–237

    Google Scholar 

  42. Dalpi M, Karayanni E, Koutsoukos PG. Inhibition of hydroxyapatite formation in aqueous solutions by Zn and 1, 2 Dihydroxy-1,2-bis (dihydroxyphosphonyl) ehtane, J Chem Soc Farad Trans 1993;89:965–969

    Google Scholar 

  43. Neuman WF, Bjomerstedt B, Mulryan BJ. Synthetic hydroxyapatite crystals II. Aging and strontium incorporation. Arch Biochem Biophys 1963; 101:215–224

    Google Scholar 

  44. Bartley JC, Reber EF. Effect of roasting on radiostrontium in fresh ham, J Nutr 1961,75:21–26

    Google Scholar 

  45. Elliot JC. The problems of the composition and structure of the mineral components of the hard tissues. Clin Orthop 1973;93:313–345

    Google Scholar 

  46. Young RA. Some aspects of crystal structural modeling of biological apatites, Colloq Int 1973;CNRS No 230:21–44

    Google Scholar 

  47. Collin RL. Strontium-Calcium Hydroxyapatite Solid Solutions Precipitated from Basic Aqueous Solutions. J Amer Chem Soc 1960;82:5067–5069

    Google Scholar 

  48. Hayek E, Petter H. Hydrothermal synthesis of bivalent metal phosphate, Manatschh Chem 1960;91:356–360

    Google Scholar 

  49. Koutsoukos PG, Nancollas GH. Influence of strontium ion on the crystallization of hydroxyapatite from aqueous solutions. J Phys Chem 1981;85:2403–2408

    Google Scholar 

  50. Trombe JC, Montel G. Process for treating apatites applicable to other minerals,CR Acad Sci Ser C 1974,278:1227–1230

    Google Scholar 

  51. Fowler BO. Infrared studies of apatites. I. Vibrational assignements for calcium, strontium and barium hydroxylapatites utilizing isotopic substitution. Inorg Chem 1974; 13:194–207

    Google Scholar 

  52. Urusov VS, Khudolozhkin VO. Energy analysis of cation ordering in the structure of apatite, Geokhimiya 1974:1509–1515

    Google Scholar 

  53. Ehrent A. Ph.D. Thesis, Tübigen University, Germany 1962.

    Google Scholar 

  54. Roushdy HM, Moloukhia MK, Abdel Fattali AT. Effect of dietary calcium level on the rate of deposition of radiostrontium in rat bones. Isot Rad Res 1981; 13:19–26

    Google Scholar 

  55. Zawacki SJ, Koutsoukos PG, Salimi MH, Nancollas GH. In Geochemical Processes at mineral surfaces, JA Davis, KF Hayes Eds. ACS Special Publication Series No. 323, ACS Washington DC 1976.

    Google Scholar 

  56. Dufif EJ. Interactions of divalent cations with apatites Coll Int CNRS No 203,1973:419–421

    Google Scholar 

  57. Müller M. The precipitation and the x-ray diffraction investigation of the mixed crystal system Ca10(P04)6(OH)2-Pb10(P04)6-(OH)2, Helv Chim Acta 1947;30:2069–2080

    Google Scholar 

  58. Narasaraju TSB, Singh RP, Rao VLN. New method of preparation of solid solutions of calcium and lead hydroxyapatites. J Inorg Nucl Chem 1972,34:2072–2074

    Google Scholar 

  59. Eanes ED, Posner AS. Alkaline earth intermediate phases in the basis solution preparation of phosphates. Calcif Tissue Res 1968;2:38–48

    Google Scholar 

  60. Boskey AL, Posner AS. Magnesium stabilization of amorphous calcium phosphate Mater Res Bull 1974;9:907–916

    Google Scholar 

  61. LeGeros RZ, Shirra WP, Miravite MA, LeGeros JP, Domingo GM, Quirolgico G. In Physico-Chimie et cristallographie des apatites d’ interet biologique. Colloq Intern CNRS No 230 CNRS, Paris 197

    Google Scholar 

  62. Bachra BN, Fisher HRS. Effect of some inhibitors on the nucleation and crystal growth of apatite. Calcif Tissue Res 1969;3:348–357

    Google Scholar 

  63. Cuegan C. Contribution á l’étude cinetique de 1’ evolution de l’ état amorphe a l’état apathique des orthophosphate trimetalliques (Ca, Mg) Precipites, Thèse, Institut National Polytechnique de Toulouse, Toulouse, France, 1978

    Google Scholar 

  64. Montel G, Bonel G, Heughebaert JC, Trombe JC, Rey C. New Concepts in the composition, crystallization and growth of the mineral component of calcified tissues. J Crystal Growth 1981;53:74–99

    Google Scholar 

  65. Kibalczyc W, Christoffersen J, Christoffersen MR, Zielenkiewicz A, Zielenkiewicz W. The effect of magnesium ions on the precipitation of calcium phosphates. J Crystal Growth 1990;106:355–366

    Google Scholar 

  66. Salimi HM, Heughebaert JC, Nancollas GH. Crystsal growth of calcium phosphates in the presence of magnesium ions. Langmuir 1985;1:119–122

    Google Scholar 

  67. Blake RC, Shute EA, Howard T. Solubilization of minerals by bacteria: electrophoretic study of thiobacillus ferroxidans in the presence of iron, pyrite and sulphur. Appl Environ Microbiol 1994;60:3349–3357

    Google Scholar 

  68. Krekeler C, Ziehr H, Klein J. Influence of physicochemical bacterial surface properties on adsorption to inorganic porous supports. J Appl Microbiol Biotechnol 1991;35a:484–490

    Google Scholar 

  69. Van der Mel HC, Leonard AJ, Weerkamp AH, Rouxhet PG, Busscher HJ. Properties of oral streptococci relevant to adherence: zeta potential, surface free energy and elemental composition. Colloids & Surfaces 1988,32:297–305

    Google Scholar 

  70. Lyklema J. Fundamentals of Interface and Colloid Science, Vol. II, Academic Press, London 1995.

    Google Scholar 

  71. Fuierer TA, LoRe M, Puckett SA, Nancollas GH. A mineralization adsorption and mobility study of hydroxyapapite surfaces in the presence of zinc and magnesium ions. Langmuir 1994; 10:4721–4725

    Google Scholar 

  72. Neuman WF, Toribara TY, Mulryan BJ. Synthetic hydroxyapatite crystals. I. Sodium and potassium fixation. Arch Biochem Biophys 1962;98:384–390

    Google Scholar 

  73. Koutsoukos PG. The Precipitation of Hydroxyapatite in Aqueous Solutions at 37 °C, Ph. D. Thesis, SUNYAB, Buffalo NY 1980

    Google Scholar 

  74. Koutsoukos PG, Nancollas GH. The effect of lithium on the precipitation of hydroxyapatite from aqueous solutions. Colloids & Surfaces 1986; 17:361–370

    Google Scholar 

  75. Donnely R, Boskey A. The effect of gallium on seeded HAP growth. Calcif. Tissue Int 1989;44:138–142

    Google Scholar 

  76. Christof fersen MR, Christoffersen J., The effect of aluminum on the rate of dissolution of calcium hydroxyapatite: A contribution to the understanding of aluminum-induced disease. Calcif Tissue Int 1985;37:673–676

    Google Scholar 

  77. Kresak M, Moreno EC, Zahradnik RT, Hay DI. Adsorption of aminoacids onto hydroxyapatite. J Colloid Interface Sci 1977;59:283–292

    Google Scholar 

  78. Adamson AW. Physical Chemistry of Surfaces, 5th edition, J. Wiley, New York 1990.

    Google Scholar 

  79. Xyla AC, Mikroyannidis J, Koutsoukos PG. The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds. J Colloid Interface Sci 1992; 153:537–551

    Google Scholar 

  80. Sposito G. The surface chemistry of soils, Oxford University Press, N.Y. 1984.

    Google Scholar 

  81. Sposito G Distinguishing adsorption from surface precipitation, In Geochemical processes at mineral surfaces, JA Davis, KF Hyaes Eds, ACS Symposium Series No 323, ACS, Washington DC 1986

    Google Scholar 

  82. Montel G, Bonel G, Heughebaert JC, Trombe JC, Rey C. New concepts in the composition, crystallization and growth of the mineral component of calcified tissues. J Crystal Growth 1981,53:74–99

    Google Scholar 

  83. Nancolias GH, Sawada K, Schuttringer E. Mineralization reaction involving calcium carbonates and phosphates, in Biomineralization and Biological Metal Accumulation, P Wesbroek, EW de Jong Eds. D. Dreidel Publi. Co., Dortrechf 1983.

    Google Scholar 

  84. Nancollas GH. In vivtro studies of calcium phosphate crystallization, In Biomineralization, S Mann, J Webb, RJP Williams. Eds., VCH, Weinheim 1989.

    Google Scholar 

  85. Sangwal K. Kinetics and mechanism of crystal growth In Elementary Crystal Growth, K Sangwal Ed. Saan Publ., Lublin, 1994.

    Google Scholar 

  86. Garside J. in Measurement of Crystal Growth Rates. J Garside, A Mersmann, J Nyvlt Eds. Europena Federation of Chemical Engineering Working Party on Crystallization, Münich 1990.

    Google Scholar 

  87. Mullin JW. Crystallization, 3rd Ed. Butterworth-Heinemann, Oxford 1993.

    Google Scholar 

  88. Söhnel O, Garside J. Precipitation, Butterworth Heinemann, Oxford, 1992.

    Google Scholar 

  89. Lundager Madsen HE. Calcium phosphate crystallization. III. Overall growth kinetics of tetracalcium monohydrogen phosphate. Acta Chem Scand A 1982;36:239–249

    Google Scholar 

  90. Nielsen AE, Christoffersen JC. The mechanism of crystal growth and dissolution. Life Sci. Res Rep 1982;23:37–77

    Google Scholar 

  91. Nielsen AE. Transport control in crystal growth from solution. Croat Chem Acta. 1987;60:531

    Google Scholar 

  92. O’ Hara M, Reid RC. Modeling Crystal Growth Rates from Solution, Prentice Hall, New York 1973.

    Google Scholar 

  93. Walton AG, Bodin WG, Füredi-Milhofer H, Schwartz A, Nucleation of calcium phosphates from solution, Can. J. Chem 1967;45:2695–2701

    Google Scholar 

  94. Brecevic L, Füredi Milhofer H. Precipitation of calcium phosphate from electrolyte solutions. II. The formation and transformation of precipitates Calcif. Tissue Res 1972; 10:82–90

    Google Scholar 

  95. Madsen HEL, Thorvardarson G. Precipitation of calcium phosphate from moderately acid solution. J Crystal Growth. 1984;66:369–376

    Google Scholar 

  96. Feenstra TP, DeBruyn PL. Formation of calcium phosphate in moderately supersaturated solutions. J Phys Chem 1979;83:475–479

    Google Scholar 

  97. van Kemenade MJJM, deBruyn PL. A kinetic study of the precipitation from supersaturated calcium phosphate solutions. J Coll Int Sci 1987;118:564–585

    Google Scholar 

  98. Boistelle R, Lopez Valero I. Nucleation and growth of calcium and magnesium phosphates, In Geochemistry and Mineral Formation in the Earth Surface, R Rodriguez-Clemente, Y Tardy Eds. CSIC-CNRS, Madrid 1987.

    Google Scholar 

  99. Meyer JL, Eanes ED. A thermodynamic analysis of the amorphous crystalline calcium phosphate transformation. Calcified Tissue Res 1978;25:5–68

    Google Scholar 

  100. Füredi-Milhofer H, Brecevic L, Purgaric B. Crystal growth and phase transformation in the precipitation of calcium phosphates, Faraday Discussions, Chem Soc 1976;61:184–193

    Google Scholar 

  101. Li P. In vitro and in vivo calcium phosphate induction on gel oxides, Ph.D. Thesis, RijksUniversiteit Leiden 1993.

    Google Scholar 

  102. Blumenthal NC. Mechanisms of inhibition of calcification. Clinical Orthopaedics and Related Research 1989;247:279–289

    Google Scholar 

  103. Moreno EC, Zahradnik RT, Glazman A, Hwu R. Precipitation of hydroxyapatite from dilute solutions upon seeding. Calcif Tissue Res 1977;24:47

    Google Scholar 

  104. Nancollas GH, Mohan MS., The growth of hydroxyapatite crystals. Archs Oral Biol 1970; 15:731–745

    Google Scholar 

  105. Nancollas GH. Phase transformation during precipitation of calcium salts, In Biological Mineralization and Demineralization. GH Nancollas Ed., Dahlem Konferenzen 1982, Berlin, Heidelberg New York, Springer-Verlag.

    Google Scholar 

  106. Tomson MB, Nancollas GH. Mineralization Kinetics: A constant composition approach. Science 1978;200:1059–1060

    Google Scholar 

  107. Koutsoukos PG, Amjad Z, Tomson MB, Nancollas GH. Crystallization of calcium phosphates. A constant composition study. J Am Chem Soc 1980; 102:1553–1557

    Google Scholar 

  108. Zhang J, Ebrahimpour A, Nancollas GH Dual constant composition studies of phase tranformation of dicalcium phosphate dihydrate to octacalcium phosphate. J Colloid Interface Sci 1992; 152:132–140

    Google Scholar 

  109. Nancollas GH, Zawacki SJ. Inhibitors of crystallization and dissolution in Industrial Crystallization 84, SJ Jancic, EJ de Jong Eds. Elsevier, Amsterdam 1984.

    Google Scholar 

  110. Nancollas GH, Purdie N. The kinetics of crystal growth. Quart Rev Chem Soc 1964;18:1–20

    Google Scholar 

  111. Sabbides TG. Investigation of the calcium carbonate / water interface. Ph. D. Thesis, University of Patras, Patras, Greece 1994.

    Google Scholar 

  112. Christoffersen J, Christoffersen MR, Larsen R, Rostrup E, Tingsgaard P, Andersen O, Grandjean P. Interaction of cadmium ions with calcium hydroxylapatite crystals: A possible mechanism contributing to the pathogenesis of cadmium-induced bone diseases. Calcif Tissue Int 1988;42:331–339

    Google Scholar 

  113. Dalas E, Koutsoukos PG. Crytallization for hydroxyapatite from aqueous solutions in the presence of cadmium. J Chem Soc Faraday Trans 11989,85:3159–3164

    Google Scholar 

  114. Abbona F, Baronnet A. An XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J Crystal Growth 1996; 165:98–105

    Google Scholar 

  115. Le Geros RZ, Taheri MM, Quirologico GB, Le Geros JP., Proceedings 2nd Int. Phosphorus, Boston, IMPHOS, Paris 1989.

    Google Scholar 

  116. Chiranjeevi Rao SV., A new method of preparation of solid solutions of calcium-zinc hydroxylapatites. J Indian Chem Soc 1976;LII:347–348

    Google Scholar 

  117. Pujari M, Patel PN. Strontium-copper-calcium hydroxylapatite solid solutions preparation, IR and lattice constant measurements. J Solid State Chem 1989;83:100–104

    Google Scholar 

  118. Panda A, Patel PN, Tripathy NK. Solid solutions of calcium-copper-zinc hydraxylapatiets: preparation and IR and lattice constant measurements. Ind J Chem A 1990;29A:70–72

    Google Scholar 

  119. Gilman JJ, Johnston WG, Sears GW. Dislocation etch pit formation in lithium fluoride. J Appi Phys 1958;29:747–755

    Google Scholar 

  120. Witkamp GJ. Crystallization of calcium sulfate and uptake of impurities. Ph. D. Thesis, T.V. Delf, The Netherlands, 1989.

    Google Scholar 

  121. Veintemillas-Verdaguer S. Chemical aspects of the effect of impurities in crystal growth. Prog Crystal Growth and Charact 1996,32:75–109

    Google Scholar 

  122. Nancollas GH, Wefel JS. The effect of stannous fluoride, sodium fluoride and stannous chloride on the crystallization of dicalcium phosphate dihydrate at constant pH. J Crystal Growth 1974;23:169–176

    Google Scholar 

  123. Lyklema J. Electrified interfaces in aqueous dispersion of solids. Pure and Appl Chem 1991;63:895–918

    Google Scholar 

  124. Melikhov IV, Lazic S, Vukovic Z. The effect of dissolved impurity on calcium phosphate nucleation in supersaturated medium. J Colloid Interface Sci 1989; 127:317–326

    Google Scholar 

  125. Lazic S. pH effect on the coprecipitation of radioactive strontium with calcium phosphate. Radiochim Acta 1993,62:95–98

    Google Scholar 

  126. Berglund KA Analysis and measurement of crystallization utilizing the population balance, In Handbook of Industrial Crystallization. AS Myerson, Ed., Butterworth-Heinemann, Boston 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koutsoukos, P.G. (1998). Influence of Metal Ions on the Crystal Growth of Calcium Phosphates. In: Amjad, Z. (eds) Calcium Phosphates in Biological and Industrial Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5517-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5517-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7521-0

  • Online ISBN: 978-1-4615-5517-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics