Skip to main content

Learning and Tuning of Fuzzy Rules

  • Chapter
Fuzzy Systems

Part of the book series: The Springer Handbook Series on Fuzzy Sets ((FSHS,volume 2))

Abstract

The main idea in integrating fuzzy logic systems with learning and tuning techniques is to use the strength of each one collectively in the resulting adaptive fuzzy system. This fusion produces a major group of techniques required for computing with words and soft computing [1, 2, 3]. In this chapter, we discuss a small set of these techniques for generation of fuzzy rules from data and also, a set of techniques for tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rule generation methods. For tuning, we discuss Jang’s ANFIS architecture, Berenji-Khedkar’s GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L. A. (1996). Fuzzy logic = computing with words, Transactions on Fuzzy Systems, 4(2), 103–111.

    Article  MathSciNet  Google Scholar 

  2. Zadeh, L. A. (1996). The roles of fuzzy logic and soft computing in the conception, design and development of intelligent systems, Transactions on Fuzzy Systems, 4(2), 103–111.

    Article  MathSciNet  Google Scholar 

  3. Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing, Commun, of ACM, 37(3), 77–84.

    Article  MathSciNet  Google Scholar 

  4. Ruspini, E. H. (1982). Recent Development in Fuzzy Clustering, Fuzzy Setsand Possibility Theory, 133–147.

    Google Scholar 

  5. Bezdek, J. C. and Pal, S. K. (editors), (1992). Fuzzy Models for Pattern Recognition, IEEE Press, New York.

    Google Scholar 

  6. Nakamori, Y. and Ryoke, M. (1994). Identification of fuzzy prediction models through hyperellipsoidal clustering, IEEE Trans. Systems, Man and Cybernetics, 24(8), 1153–1173.

    Article  Google Scholar 

  7. Wang, L. X. and Mendel, J. M. (1992). Generating fuzzy rules by learning from examples, IEEE Trans. Systems, Man and Cybernetics, 22(6), 1414–1427.

    Article  MathSciNet  Google Scholar 

  8. Takagi, T. and Sugeno, M. (1983). Derivation of fuzzy control rules from human operator’s control actions, IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, Marseille, France, pp. 55–60.

    Google Scholar 

  9. Kosko, B. (1992). Neural Networks and Fuzzy Systems, Prentice Hall.

    Google Scholar 

  10. Dickerson, J. A. and Kosko, B. (1996). Fuzzy function approximation with ellipsoidal rules, IEEE Transactions on Systems, Man, and Cybernetics, 26(4), 542–560.

    Article  Google Scholar 

  11. Bezdek, J. C. Fuzzy Mathematics in Pattern Classification. Ph. D. Thesis, Cornell University, 1973.

    Google Scholar 

  12. Krishnaiah, P. R. and Kanal, L. N. (1982). Kanal L. N. (Eds.), North Holland, Amsterdam

    Google Scholar 

  13. Krishnapuram, R. and Nasraoui, O and Frigui, H. (1992). The Fuzzy C Spherical Shells Algorithm: A New Approach, IEEE Transactions on Neural Networks, 3(5), 663–671.

    Article  Google Scholar 

  14. Bezdek,_J. C, Krishnapuram, Raghu, and Pal, Nik (editors) (1992) Fuzzy Models and algorithms for pattern recognition and image processing, IEEE Press, New York.

    Google Scholar 

  15. Breman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classifications Decision Trees, Wadsworthm, Inc. Belmont, CA.

    Google Scholar 

  16. Quinlan, J. R. (1986). Induction of Decision Trees, Machine Learning, 1, 81–106.

    Google Scholar 

  17. Quinlan, J. R. (1990). Decision trees and decision making, IEEE Trans. Systems, Man and Cybernetics, 20(2), 339–346.

    Article  Google Scholar 

  18. Berenji, H. R. (1990). Machine learning in fuzzy control, Int. Conf. on Fuzzy Logic and Neural Networks, Iizuka, Fukuoka, Japan, pp. 231–241.

    Google Scholar 

  19. Karr, C. L. and Stanley, D. A. (1991). Fuzzy logic and genetic algorithms in time-varying control problems, Proceedings of the NAFIPS’91, pp. 285–290.

    Google Scholar 

  20. Karr, C. L. (1991). Applying genetics to fuzzy logic, AI Expert, 6(3), 38–43.

    MathSciNet  Google Scholar 

  21. Berenji, H. R. and Malyshev, S. “A fuzzy reinforcement learning system based on genetic algorithm”, Technical Report, NASA SBIR phase 1 final report, July, 1994.

    Google Scholar 

  22. Jang, J.-S. R. and Sun, C.-T. (1997) Neuro-Fuzzy and Soft Computing, Prentice-Hall, Inc., Upper Saddle River, NJ.

    Google Scholar 

  23. Berenji, H. R. and Khedkar, P. (1993). Clustering in product space for fuzzy inference, Second IEEE Interntional Conference on Fuzzy Systems, pp. 1402-1407, San Francisco, CA.

    Google Scholar 

  24. Procyk, C. W. and Mamdani, E. H. (1979) A linguistic self-organizing process controller, Automatica, 15(1), 15–30.

    Article  MATH  Google Scholar 

  25. Dubois, D. and Prade, H. (1980) Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York.

    MATH  Google Scholar 

  26. Wee, W. G. and Fu, K. S. (1969) A formulation of fuzzy automata and its application as a model of learning systems, IEEE Transactions on Systems, Man, and Cybernetics, SSC-5, 215–223.

    Google Scholar 

  27. Kiyoji Asai and Seizo Kitajima (1971) Learning Control of Multimodal Systems by Fuzzy Automata, In K.S. Fu, editor, Pattern Recognition and Machine Learning, pp. 195–203, Plenum Press, New York.

    Chapter  Google Scholar 

  28. Kiyoji Asai and Seizo Kitajima (1971) A Method for Optimizing Control of Multimodal Systems using Fuzzy Automata, Information Sciences, 3, 343–353.

    Article  MathSciNet  MATH  Google Scholar 

  29. Saridis, G. N. and Stephano, H. E. (1977) Fuzzy decision making in prosthetic devices, In M.M Gupta, G.N. Saridis, and B.R. Gaines, editors, Fuzzy Automata and Decision Making Processes, pp. 387–402, North Holland, Amsterdam.

    Google Scholar 

  30. Jang, J. S. (1993). Adaptive neural network-based fuzzy inference systems, IEEE Transactions on Systems, Man, and Cybernetics, 23(3).

    Google Scholar 

  31. Berenji, H. R. and Khedkar, P. (1992) Learning and Tuning Fuzzy Logic Controllers Through Reinforcements, IEEE Transaction on Neural Networks. 3(5).

    Google Scholar 

  32. Barto, A. G.,Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult learning control problems, IEEE Transactions on Systems, Man, and Cybernetics, 13, 834–846.

    Article  Google Scholar 

  33. Watkins, C. J. C. H. Learning with Delayed Rewards, Ph. D. Thesis, Cambridge University, Psychology Department, 1989.

    Google Scholar 

  34. Bellman, R. and Zadeh, L.A. (1970). Decision-making in a fuzzy environment, Management Science, 17(4), 141–164.

    Article  MathSciNet  Google Scholar 

  35. Berenji, H. R. (1994). A new approach for fuzzy Dynamic programming problems, Third IEEE International Conference on Fuzzy Systems, pp. 486–491, Orlando, FL.

    Google Scholar 

  36. Bellman, R. (1957). Dynamic Programming, Princeton University Press, Princeton.

    MATH  Google Scholar 

  37. Berenji, H. R. (1993). Fuzzy reinforcement learning and dynamic programming, International Joint Conference on Artificial Intelligence, Workshop on Fuzzy Logic Control, Chambery, France.

    Google Scholar 

  38. Glorennec, P. Y. (1994). Fuzzy Q-learning and dynamical Fuzzy Q-learning. In FUZZ-IEEE, pp. 474–479, Orlando, FL.

    Google Scholar 

  39. Jang, J. S. (1994). Structure determination in fuzzy modeling: a fuzzy CART approach, Third IEEE International Conference on Fuzzy Systems, pp. 480–485, Orlando, FL.

    Google Scholar 

  40. Lin, C. T. and Lee, C. S. G. (1994). Reinforcement Structure/Parameter Learning for Neural-Network-Based Fuzzy Logic Control Systems, IEEE Trans. on Fuzzy Systems, 2, 46–63.

    Article  Google Scholar 

  41. Lin, C. T. and Lee, C. S. G. (1992). Real-time Supervised structure / parameter learning for fuzzy neural network, IEEE International conference on Fuzzy Systems, San Diego, CA. pp. 1283–1290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berenji, H.R. (1998). Learning and Tuning of Fuzzy Rules. In: Nguyen, H.T., Sugeno, M. (eds) Fuzzy Systems. The Springer Handbook Series on Fuzzy Sets, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5505-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5505-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7515-9

  • Online ISBN: 978-1-4615-5505-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics