Skip to main content

Modulation, Multiple Access, and How Radio Waves Behave Indoors

  • Chapter
Low-Power CMOS Wireless Communications
  • 160 Accesses

Abstract

To begin, the system design of the high-speed downlink will be discussed in this chapter and the next. Given that an in-building solution is desired, a description of the propagation characteristics of the indoor channel will first be presented. This is followed by a short exposition of the available digital modulation and multiple-access strategies, describing the advantages and disadvantages of each. In Chapter 3, the actual system link specification will be given – in terms of number of users per base-station, transmit bandwidth, modulation strategies – and a discussion of how this specification was devised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.L. Blackard et al. “Radio Frequency Noise Measurements and Models for Indoor Wireless Communications at 918 MHz, 2.44 GHz, and 4.0 GHz.” Submitted to IEEE Transactions on Antennas and Propagation, June 1991.

    Google Scholar 

  2. J. Buck. “The Ptolemy Kernel: A Programmer’s Companion for Ptolemy 0.4,” UCB/ERL Memorandum No. M93/8, January 19, 1993.

    Google Scholar 

  3. C.E. Cook and H.S. Marsh. “An Introduction to Spread Spectrum,” IEEE Communications Magazine, pp. 8–16. March 1983.

    Google Scholar 

  4. R.C. Dixon. Spread Spectrum Systems,2nd ed., New York: J. Wiley and Sons, 1984.

    Google Scholar 

  5. B. Ekelund and M. Torkelson. “Waveform Generation for CPM Transmitters.” Memorandum of the Department of Applied Electronics, University of Lund, Lund, Sweden, January 1987.

    Google Scholar 

  6. K. Feher. Advanced Digital Communications. New Jersey: Prentice-Hall Inc. 1987.

    MATH  Google Scholar 

  7. R. Gold. “Optimal Binary Sequences for Spread-Spectrum Multiplexing.” IEEE Transactions on Information Theory, Vol. IT-13, pp. 619–621. October 1967.

    Article  Google Scholar 

  8. R. Gold. “Maximal Recursive Sequences with 3-Valued Recursive Cross Correlation Functions.” IEEE Transactions on Information Theory, Vol. IT-14, pp. 154–156. January 1968.

    Article  Google Scholar 

  9. T. Kasami. “Weight Distribution Formula for Some Class of Cyclic Codes,” Technical Report No. R-285. Coordinated Science Laboratory, Univ. of Illinois, Urbana, IL, April 1966.

    Google Scholar 

  10. E.A. Lee and D.G. Messerschmitt. Digital Communication. New York: Kluwer Academic Publishers, 1988.

    Book  Google Scholar 

  11. W. C-Y Lee. Mobile Cellular Telecommunications Systems. New York: McGraw-Hill Book Co., 1989

    Google Scholar 

  12. K. Murota and K. Hirade. “Transmission Performance of GMSK Modulation.” Transactions of the IECE of Japan, Vol. 64-B, p. 1123. October 1981.

    Google Scholar 

  13. H. Nicholas III, H. Samueli. “A 150-MHz Direct Digital Frequency Synthesizer in 1.25-um CMOS with-90 dBc Spurious Performance.” IEEE Journal of Solid-State Circuits, Vol. 26, pp. 1959–1969. December 1991.

    Article  Google Scholar 

  14. S.O. Ohrvick et al. “Microcell Radio Channel: Preliminary Report on Indoor Field-Strength Measurements at 900 and 1700 MHz.” Memorandum of the Department of Applied Electronics, University of Lund, Lund, Sweden, January 1989.

    Google Scholar 

  15. R.L. Pickholtz and D.L. Schilling. “Theory of Spread-Spectrum Communications – A Tutorial.” IEEE Transactions on Communications, Vol. COM-30, No. 5, pp. 855–883. May 1982.

    Article  Google Scholar 

  16. J.G. Proakis. “Adaptive Equalization for TDMA Digital Mobile Radio.” IEEE Transactions on Vehicular Technology, Vol. VT-40, No. 2, pp. 323–332. May 1991.

    Google Scholar 

  17. J.G. Proakis. Digital Communications. New York: McGraw-Hill Book Co., 1983

    Google Scholar 

  18. K. Raith and J. Uddenfelt. “Capacity of Digital Cellular TDMA Systems.” IEEE Transactions on Vehicular Technology, Vol. VT-40, No. 2, pp. 323–332. May 1991.

    Google Scholar 

  19. A.M. Saleh and R. A. Valenzuela. “A Statistical Model for Indoor Multipath Propagation.” IEEE Journal of Selected Areas in Communications, Vol. SAC-5, No. 2, pp. 128–137. February 1987.

    Article  Google Scholar 

  20. D.V. Sarwate and M.B. Pursley. “Crosscorrelation Properties of Pseudorandom and Related Sequences.” Proceedings of the IEEE, Vol. 68, pp. 593–619. May 1980.

    Article  Google Scholar 

  21. R.A. Scholtz. “Optimal CDMA Codes.” 1979 National Telecommunications Conf. Record, Washington, D.C., pp. 54.2.1–54.2.4. November 1979.

    Google Scholar 

  22. S.Y. Seidel and T.S. Rappaport. “Radio Channel Models in Manufacturing Environments.” Wireless Information Networks Workshop, Rutgers University, Rutgers, NewJersey,June l5, 1989.

    Google Scholar 

  23. S.Y. Seidel and T.S. Rappaport. “914 MHz Path-Loss Prediction Models for Indoor Wireless Communications in Multi-floored Buildings.” Submitted to IEEE Transactions on Antennas and Propagation, May 17, 1991.

    Google Scholar 

  24. S. Sheng. Wideband Digital Portable Communications: A System Design. M.S. Thesis, Memorandum No. UCB/ERL M91/108, U.C. Berkeley, Berkeley, CA, December 3, 1991.

    Google Scholar 

  25. M.K. Simon, et al. Spread-Spectrum Communications, Vol. 1-3. New York: Computer Science Press Inc., 1985.

    Google Scholar 

  26. R.C. Stirling. Microwave Frequency Synthesizers. New Jersey: Prentice-Hall Inc., 1987.

    Google Scholar 

  27. L. Svennson. Implementation Aspects of Decision-Feedback Equalizers for Mobile Telephones. Ph.D. Dissertation, Department of Applied Electronics, University of Lund, Lund, Sweden, May 1990.

    Google Scholar 

  28. C.Teuscher. Ph.D. thesis on Multi-Access Limited, Multi-User Combining Techniques, Forthcoming. U.C. Berkeley, Berkeley, CA, 1997.

    Google Scholar 

  29. S. Verdu. “Multiuser Detection.” Advances in Statistical Signal Processing Vol. 2: Signal Detection, pp. 369–409. Greenwich, CT: JAI Press, 1993.

    Google Scholar 

  30. S. Verdu. “Demodulation in the Presence of Multiuser Interference: Progress and Misconceptions.” Intelligent Methods in Signal Processing and Communications, D. Docampo, A. Figueiras-Vidal, F. Perez-Gonzalez, eds, pp. 15–44. Boston: Birkhauser, 1997.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheng, S., Brodersen, R. (1998). Modulation, Multiple Access, and How Radio Waves Behave Indoors. In: Low-Power CMOS Wireless Communications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5457-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5457-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7492-3

  • Online ISBN: 978-1-4615-5457-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics