Skip to main content

Chemical and Biological Microactuators

  • Chapter
Microactuators

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 4))

  • 218 Accesses

Abstract

Both chemical and biological actuators are capable of producing very large forces and their energy densities and efficiencies are larger than other types of actuators. Mechanisms that are used in biological systems to extract useful work from chemical reactions are quite interesting and inspiring and can be quite beneficial in the design of novel “artificial” microactuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Linden, “Batteries and Fuel Cells.” In: Electronics Engineers’ Handbook.” Edited by: D. G. Fink and A. A. McKenzie, McGraw-Hill Book Co., NY, pp. 7–66-7-56 (1975).

    Google Scholar 

  2. I. Buchmann, “Batteries.” In: The Electronics Handbook. CRC and IEEE Press, NJ, pp. 1055–1061 (1996).

    Google Scholar 

  3. M. W. Hamberg, et. al., “An Electrochemical Micro-Actuator.” Proceedings of IEEE Micro Electro Mechanical Systems, Amsterdam, the Netherlands, Pub.# 95CH35754, pp. 106–110 (1995).

    Google Scholar 

  4. P. A. Mayes, “Bioenergetics.” In: Harper’s Review of Biochemsitry.” 20 ed., Edited by: D. W. Martin, Jr., P. A. Mayes, V. W. Rodwell, and D. K. Granner, Lange Medical Publications, Los Altos, CA, pp. 65–71 (1985).

    Google Scholar 

  5. D. W. Martin, “Contractiles & Structural Proteins.” In: Harper’s Review of Biochemsitry.” 20 ed., Edited by: D. W. Martin, Jr., P. A. Mayes, V. W. Rodwell, and D. K. Granner, Lange Medical Publications, Los Altos, CA, pp. 480–496 (1985).

    Google Scholar 

  6. A. C. Guyton, Medical Physiology. 8th ed. W. B. Saunders Company, Philadelphia, pp. 67–79 (1991).

    Google Scholar 

  7. R. P. F. Gregory, Biochemistry of Photosynthesis. 3rd ed., John Wiley & Sons, New York (1989).

    Google Scholar 

  8. G. H. Pollack, “Contemporary Problems in Biology: Contractile Materials.” In: Nanofabrication and Biosystems. Edited By: H. C. Hoch, L. W. Jelinski and H. G. Craighead, Cambridge University Press, Cambridge, UK, pp. 381–395 (1996).

    Google Scholar 

  9. T. A. McMahon. Muscles, Reflexes, and Locomotion. Princeton University Press, Princeton, New Jersey (1984).

    Google Scholar 

  10. Y. C. Fung, Biomechanics. 2nd ed., Springer-Verlag, New York, Inc., (1993).

    Book  Google Scholar 

  11. H. Davson, “General Physiology.” 4th Ed. The William and Wilkins Co., Baltimore, pp. 1–65 (1970).

    Google Scholar 

  12. R. zur Strassen, “The Beetles, Weevils, and Stylopids. In: Grzimek’s Animal Life Encyclopedia. Editor-in-Chief: B. Grzimek, Van Norstand Reinhold Company, New York, pp. 231–297 (1970).

    Google Scholar 

  13. A. H. Epstein et. al., “Micro-Heat Engines Gas Turbines, and Rocket Engines-The MIT Microengine Project.” Proceedings of 28th AIAA Fluid Dynamics Conference and 4th AIAA Shear Flow Control Conference, June 29 — July 2, 1997 Snowmass Village, Colorado.

    Google Scholar 

  14. A. H. Epstein, et. al., “Power MEMS and Microengines.” Transducers ′97, pp. 753–756 (1997).

    Google Scholar 

  15. N. E. Agbor, M. C. Petty and A. P. Monkman, Sensors and Actuators, B28, 173–179 (1995).

    Google Scholar 

  16. W. Schuhmann, R. Lammert, B. Uhe and H.L. Schmidt, Sensors and Actuators, B1, 537–541 (1990).

    Google Scholar 

  17. K. Ramanathan, M. K. Ram, B. D. Malhotra and A. S. N. Murthy, Materials Science and Engineering: C3, 159–163 (1995) T. Hirai et al., J. of Intelligent material systems and structures v4 n2 277-279 (1993).

    Google Scholar 

  18. T. Tanaka, “Gels.” Scientific American, Vol. 244(1), pp. 124–138 (1981).

    Article  Google Scholar 

  19. A. Suzuki and T. Tanaka, “Phase Transition in Polymer Gels Induced by Visible Light.” Nature, Vol. 346, pp. 345–347 (1990).

    Article  Google Scholar 

  20. T. tanaka, I. Nishio, S.-T. Sun and S. Ueno-Nishio, “ Collapse of Gels in an Electric Field.” Science, Vol. 218, pp. 467–469 (1982).

    Article  Google Scholar 

  21. D. K. Jackson, S. B. Leeb, A. H. Mitwalli, P. Narvaez, D. Fusco, and E. C. Lupton, Jr., “Power Electronic Drives for Magnetically Triggered Gels.” IEEE Trans. on Industrial Electronics, Vol. 44(2), pp. 217–224 (1997).

    Article  Google Scholar 

  22. A. Suzuki, T. Ishii, and Y. Maruyama, “Optical Switching in Polymer Gels.” J. Appl. Phys. Vol. 80(1), pp. 131–136 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabib-Azar, M. (1998). Chemical and Biological Microactuators. In: Microactuators. Electronic Materials: Science and Technology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5445-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5445-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8089-4

  • Online ISBN: 978-1-4615-5445-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics