Skip to main content

Mechanical and Acoustic Microactuators and Micropumps

  • Chapter
  • 221 Accesses

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 4))

Abstract

As we discussed in Chapter 1, actuators can be viewed as devices that transform various forms of energy into mechanical work. In mechanical actuators, the starting energy itself is in the mechanical form and the actuator transforms one mechanical variable into another one [1–6]. Displacement, velocity and acceleration, and their equivalents in fluids [7– 15], are the main variables of interest and importance in mechanical actuators. Examples of these actuators are solid links and levers that transform small displacement and large forces to large displacements with small forces and gears that perform similar tasks. Other interesting examples are mechanisms which can be used to “rectify” oscillatory motions and generate d.c. displacements [16–20].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Behi, M. Mehregany and K. J. Gabriel, “A Microfabricated Three-Degree-of-Freedom Parallel Mechanisms.” In Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, pp. 159–165 (1990).

    Google Scholar 

  2. M. Mehregany and Y. C. Tai, “Surface Micromachined Mechanisms and Micromotors.” Journal of Micromechanics and Microengineering, Vol. 1(2), pp. 73–85 (1992).

    Article  Google Scholar 

  3. K. C. Stark, Mechanical Coupling of Polysilicon Surface Micromachined Mechanisms. Ph.D. Dissertation, Case Western Reserve University (1997).

    Google Scholar 

  4. N. M. Mourlas, K. C. Stark, M. Mehregany and S. M. Phillips, “Exploring Polysilicon Micromotors for Data Storage Micro Disks.” In Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, San Diego, CA, pp. 198–203 (1996).

    Google Scholar 

  5. K. C. Stark, M. Mehregany and S. M. Phillips, “Mechanical Coupling and Direct Torque Measurement of Outer-Rotor Polysilicon Micromotors.” In Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Nagoya, Japan, pp. 221–226 (1997).

    Google Scholar 

  6. A. Lal, R. M. White, “Silicon Micromachined Ultrasonic Micro-Cutter.” Proceedings of IEEE Ultrasonics Symposium, pp. 1907–1911 (1994).

    Google Scholar 

  7. H.-P Trah, H. Baumann, C. Doring, H. Goebel, T. Grauer, and M. Mettner, “Micromachined Valve with Hydraulically Actuated Membrane Subsequent to a Thermoelectrically Controlled Bimorph Cantilever.” Sensors and Actuators A, Vol. 39, pp. 169–176 (1993).

    Article  Google Scholar 

  8. E. Stemme, and G. Stemme, “A Valveless Diffuser/Nozzle-Based Fluid Pump.” Sensors and Actuators A, Vol. 39, pp. 159–167 (1993). (b) E. Stemme and G. Stemme, “A Valveless Diffuser/Nozzle-Based Fluid Pump.” Sensors and Actuators A, Vol. 39, pp. 159-167 (1993).

    Article  Google Scholar 

  9. M. J. Zdeblick, P. P. Barth, and J. B. Angell, “A Microminiature Fluidic Amplifier.” Sensors and Actuators A, Vol. 15, pp. 427–433 (1989).

    Article  Google Scholar 

  10. P. Krause, E. Obermeier and W. Wehl, “A Micromachined Single-Chip Inkjet Printhead.” Sensors and Actuators A 53, pp. 405–409 (1996).

    Article  Google Scholar 

  11. C. E. Bradley and R. M. White, “Acoustically Driven Flow in Flexural Plate Wave Devices: Theory and Experiment.” Proceedings of IEEE Ultrasonics Symposium, pp. 593–597 (1994). b) K. Hashimoto, K. Ikekame and M. Yamaguchi, #x201C;Micro-Actuators Employing Acoustic Streaming Caused by High-Frequency Ultrasonic Waves.” Transducers ′97, pp. 805-808 (1997).

    Google Scholar 

  12. R. M. Moroney, R. M. White and R. T. Howe, “Fluid Motion Produced by Ultrasonic Lamb Waves.” Proc. IEEE Ultrasonic Symposium, p. 355 (1990).

    Google Scholar 

  13. R. M. White, P. J. Wicher, S. W. Wenzel and E. T. Zellers, “Plate-Mode Ultrasonic Sensors.” IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control, UFFC-34, p. 162 (1987).

    Google Scholar 

  14. M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface Acoustic Wave Atomizer.” Sensors and Actuators A, Vol. 50, pp. 69–74 (1995).

    Article  Google Scholar 

  15. I. Edere, J. Grasegger, C. Tille, “Droplet Generator With Extraordinary High Flow Rate and Wide Operation Range.” Transducers ′97, pp. 809–812 (1997).

    Google Scholar 

  16. R. W. Brockett, “On the Rectification of Vibratory Motion.” Sensors and Actuators A, Vol. 20, pp. 91–96 (1989).

    Article  Google Scholar 

  17. A. P. Pisano, “Resonant-Structure Micromotors: Historical Perspective and Analysis.” Sensors and Actuators A, Vol. 20, pp. 83–89 (1989).

    Article  Google Scholar 

  18. T. Morita, M. Kurosawa, and T. Higuchi, “An Ultrasonic Micromotor Using a Bending Cylindrical Transducer Based on PZT Thin Film.” Sensors and Actuators A, Vol. 50, pp. 75–80 (1995).

    Article  Google Scholar 

  19. R. M. Moroney, R. M. White and R. T. Howe, “Ultrasonic Micromotors: Physics and Applications.” IEEE Proceeding of Ultrasonics, Pub# CH832, pp. 182–187 (1990).

    Google Scholar 

  20. J. S. Danel, P. Charvet, Ph. Robert, P. Villard, “The Electrostatic Ultrasonic Micromotor.” Transducers ′97, pp. 53–56 (1997).

    Google Scholar 

  21. A. D. Pierce, Acoustics. McGraw-Hill Book Company, New York (1981).

    Google Scholar 

  22. P. M. Morse and K. U. Ingard, Theoretical Acoustics. Princeton University Press, New Jersey (1968).

    Google Scholar 

  23. J. R. Frederick, Ultrasonic Engineering. John Wiley & Sons, Inc., New York, (1965).

    Google Scholar 

  24. L. D. Rozenberg, Sources of High-Intensity Ultrasound. Plenum Press, New York, (1969).

    Book  Google Scholar 

  25. K. Petersen, “From Microsensors to Microinstruments.” Sensors and Actuators A Vol. 56, pp. 143–149 (1996). (b) J. Fluitman, “Microsystem Technology: Objectives.” Sensors and Actuators A Vol. 56, pp. 151-166 (1996)..

    Article  Google Scholar 

  26. R. G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink Jets.” The Review of Scientific Instruments, Vol. 36(2), pp. 131–136 (1965).

    Article  Google Scholar 

  27. L. Kuhn, E. Bassous and R. Lane, “Silicon Charge Electrode Array for Ink Jet Printing.” IEEE Transaction on Electron Devices, Vol. ED-25(10), pp. 1257–1260 (1978).

    Article  Google Scholar 

  28. R. D. Carnahan and S. L. Hou, “Ink Jet Technology.” IEEE Transactions on Industry Applications, Vol. IA-13(1) pp. 95–105 (1977).

    Article  Google Scholar 

  29. F. J. Kamphoefner, “Ink Jet Printing.” IEEE Transaction on Electron Devices, Vol. ED-19(4), pp. 584–593 (1972).

    Article  Google Scholar 

  30. K. E. Petersen, “Fabrication of an Integrated, Planar Silicon Ink-Jet Structure.” IEEE Transaction on Electron Devices, Vol. ED-26(12), pp. 1918–1920 (1979).

    Article  Google Scholar 

  31. M. Esashi, “Integrated Micro Flow Control Systems.” Sensors and Actuators, A21-A23, pp. 161–167 (1990).

    Google Scholar 

  32. A. Richter, A. Plettner, K. A. Hofmann and H. Sandmaier, “A Micromachined Electrohydrodynamic (EHD) Pump.” Sensors and Actuators A, Vol. 29, pp. 159–168 (1991).

    Article  Google Scholar 

  33. A. Olsson, G. Stemme and Erik Stemme, “A Valve-Less Planar Fluid Pump with two Pump Chambers.” Sensors and Actuators A, Vol. 46-47, pp. 549–556 (1995).

    Article  Google Scholar 

  34. C. Campbell. Surface Acoustic Wave Devices and Their Signal Processing Applications. Academic Press, Inc., San Diego, CA, (1989).

    Google Scholar 

  35. M. Tabib-Azar, M. N. Abedin, Agostino Abbate, and P. Das, “Characterization of Semiconductor Materials and Devices Using Acousto-Electric Voltage Measurement.” Journal of Vacuum Science and Techn. B, Vol. 9(1), pp. 95–110 (1991).

    Article  Google Scholar 

  36. M. N. Araghi, C. J. Kramer and P. Das, “Acousto-Optic Investigation of Layer Wave Properties.” Proc. of the IEEE Ultrasonics Symposium, pp. 103–106 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabib-Azar, M. (1998). Mechanical and Acoustic Microactuators and Micropumps. In: Microactuators. Electronic Materials: Science and Technology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5445-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5445-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8089-4

  • Online ISBN: 978-1-4615-5445-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics