Molecular Phylogenetic and Evolutionary Studies of Parasitic Plants



The parasitic nutritional mode is a frequently evolved adaptation in animals (Price, 1980), as well as in flowering plants (Kuijt, 1969). Heterotrophic angiosperms can be classified as either mycotrophs or as haustorial parasites. The former derive nutrients via a symbiotic relationship with mycorrhizal fungi. Haustorial parasites, in contrast, directly penetrate host tissues via a modified root called a haustorium and thereby obtain water and nutrients. Although such categories are often a matter of semantics, we use the term parasite in a strict sense to refer to haustorial parasites. Angiosperm parasites are restricted to the dicot subclasses Magnoliidae, Rosidae, and Asteridae; have evolved approximately 11 times; and represent approximately 22 families, 265 genera, and 4,000 species, that is, about 1% of all angiosperms (Fig. 8.1). Owing to their unique adaptations, parasitic plants have long been the focus of anatomical, morphological, biochemical, systematic, and ecological research (Kuijt, 1969; Press and Graves, 1995). For the vast majority of parasitic plants, negative effects upon the host are difficult to detect, yet others (e.g., Striga, Orobanche) are serious weeds of economically important crops (Kuijt, 1969; Musselman, 1980; Eplee, 1981; Stewart and Press, 1990; Press and Graves, 1995).


Substitution Rate Plastid Genome Plant Molecular Biology Parasitic Plant Plastid Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adam, Z. 1995. A mutation in the small subunit of ribulose 1,5-biphosphate carboxylase/oxygenase that reduces the rate of its incorporation into holoenzyme. Photosynthesis Research 43:143–147.CrossRefGoogle Scholar
  2. An-Ming, L. 1990. A preliminary cladistic study of the families of the superorder Lamiiflorae. Botanical Journal of the Linnean Society 103:39–57.CrossRefGoogle Scholar
  3. Arts, G. J., and R. Benne. 1996. Mechanism and evolution of RNA editing in kinetoplastida. Biochimica Biophysica Acta 1307:39–54.CrossRefGoogle Scholar
  4. Barlow, B. A. 1964. Classification of the Loranthaceae and Viscaceae. Proceedings of the Linnaean Society of New South Wales 89:268–272.Google Scholar
  5. Barlow, B. A. 1983. Biogeography of Loranthaceae and Viscaceae. In The Biology of Mistletoes, eds. M. Calder and P. Bernhardt, pp. 19–45. Academic Press, New York.Google Scholar
  6. Barlow, B. A., and D. Wiens. 1971. The cytogeography of the loranthaceous mistletoes. Taxon 20:291–312.CrossRefGoogle Scholar
  7. Bhandari, N. N., and S. C. A. Vohra. 1983. Embryology and affinities of Viscaceae. In The Biology of Mistletoes, eds., M. Calder and P. Bernhardt, pp. 69–86. Academic Press, New York.Google Scholar
  8. Boeshore, I. 1920. The morphological continuity of Scrophulariaceae and Orobanchaceae. Contributions of the Botanical Laboratory of the Morris Arboretum 5:139–177.Google Scholar
  9. Bömmer, D., G. Haberhausen, and K. Zetsche. 1993. A large deletion in the plastid DNA of the holoparasitic flowering plant Cuscuta reflexa concerning two ribosomal proteins (rpl2, rpl23), one transfer RNA (trnl) and an ORF 2280 homologue. Current Genetics 24:171–176.PubMedCrossRefGoogle Scholar
  10. Bousquet, J., S. H. Strauss, A. H. Doerksen, and R. A. Price. 1992. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proceedings of the National Academy of Sciences U.S.A. 89:7844–7848.CrossRefGoogle Scholar
  11. Bowe, L. M., and C. W. dePamphilis. 1996. Effects of RNA editing and gene processing on phylogenetic reconstruction. Molecular Biology and Evolution 13:1159–1166.PubMedCrossRefGoogle Scholar
  12. Bricaud, C. H., P. Thalouarn, and S. Renaudin. 1986. Ribulose 1,5-bisphosphate carboxylase activity in the holoparasite Lathraea clandestina L. Journal of Plant Physiology 125:367–370.CrossRefGoogle Scholar
  13. Burtt, B. L. 1965. The transfer of Cyrtandromoea from Gesneriaceae to Scrophulariaceae, with notes on the classification of that family. Bulletin of the Botanical Survey 7:73–88.Google Scholar
  14. Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedrén, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn, Jr., S. W. Graham, S. C. H. Barrett, S. Dayanandan, and V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80:528–580.CrossRefGoogle Scholar
  15. Cocucci, A. E. 1983. New evidence from embryology in angiosperm classification. Nordic Journal of Botany 3:67–73.CrossRefGoogle Scholar
  16. Colwell, A. E. 1994. Genome evolution in a non-photosynthetic plant, Conopholis Americana. Ph.D. dissertation, Washington University, St. Louis, Missouri.Google Scholar
  17. Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.Google Scholar
  18. Cronquist, A. 1988. The Evolution and Classification of Flowering Plants. New York Botanical Garden, New York.Google Scholar
  19. Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure, ed. M. O. Dayhoff, pp. 345–352. National Biomedical Research Foundation, Silver Springs, Maryland.Google Scholar
  20. Delavault, P., V. Sakanyan, and P. Thalouarn. 1995. Divergent evolution of two plastid genes, rbcL and atpB, in a non-photosynthetic parasitic plant. Plant Molecular Biology 29:1071–1079.PubMedCrossRefGoogle Scholar
  21. Delavault, P. ML, N. M. Russo, N. A. Lusson, and P. A. Thalouarn. 1996. Organization of the reduced plastid genome of Lathraea clandestina, an achlorophyllous parasitic plant. Physiologia Plantarum 96:674–682.CrossRefGoogle Scholar
  22. de Pamphilis, C. W. 1995. Genes and genomes. In Parasitic Plants, eds. M. C. Press and J. D. Graves, pp. 176–205. Chapman & Hall, London.Google Scholar
  23. de Pamphilis, C. W., and J. D. Palmer. 1989. Evolution and function of plastid DNA: a review with special reference to nonphotosynthetic plants. In Physiology, Biochemistry, and Genetics of Nongreen Plastids, eds. C. D. Boyer, J. C. Shannon, and R. C. Hardison, pp. 182–202. American Society of Plant Physiologists, Rockville, Maryland.Google Scholar
  24. de Pamphilis, C. W., and J. D. Palmer. 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature (London) 348:337–339.CrossRefGoogle Scholar
  25. de Pamphilis, C. W., N. D. Young, and A. D. Wolfe. 1997. Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proceedings of the National Academy of Sciences U.S.A. 94:7367–7372.CrossRefGoogle Scholar
  26. Dodge, J. D. and G. B. Lawes. 1974. Plastid ultrastructure in some parasitic and semi-parasitic plants. Cytobiology 9:1–9.Google Scholar
  27. Donoghue, M. J., and J. A. Doyle, 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In Evolution, Systematics, and Fossil History of the Hamamelidae, eds. P. R. Crane and S. Blackmore, pp. 17–45. Clarendon Press, Oxford.Google Scholar
  28. Downie, S. R., and J. D. Palmer. 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In Molecular Plant Systematics, eds. P. S. Soltis, D. E. Soltis, and J. J. Doyle, pp. 14–35. Chapman & Hall, New York.CrossRefGoogle Scholar
  29. Duff, R. J., and D. L. Nickrent. 1997. Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. Journal of Molecular Evolution 45:631–639.PubMedCrossRefGoogle Scholar
  30. Ems, S. C., C. W. Morden, C. K. Dixon, K. H. Wolfe, C. W. dePamphilis, and J. D. Palmer. 1995. Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Molecular Biology 29:721–733.PubMedCrossRefGoogle Scholar
  31. Eplee, R. E. 1981. Striga’s status as a plant parasite in the United States. Plant Disease 56:951–954.CrossRefGoogle Scholar
  32. Escalante, A. A., and F. J. Ayala. 1995. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proceedings of the National Academy of Sciences U.S.A. 92:5793–5797.CrossRefGoogle Scholar
  33. Fagerlind, F. 1948. Beitrage zür Kenntnis der Gynaceummorphologie und Phylogenie der Santalales-Familien. Svensk Botanisk Tidskrift 42:195–229.Google Scholar
  34. Felsenstein, J. 1978. Cases in which parsimony or compatibility will be positively misleading. Systematic Zoology 27:401–410.CrossRefGoogle Scholar
  35. Freyer, R., K. Neckermann, R. M. Maier, and H. Kössel. 1995. Structural and functional analysis of plastid genomes from parasitic plants: loss of an intron within the genus Cuscuta. Current Genetics 27:580–586.PubMedCrossRefGoogle Scholar
  36. Gaut, B., S. Muse, W. Clark, and M. Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. Journal of Molecular Evolution 35:292–303.PubMedCrossRefGoogle Scholar
  37. Gaut, B. S., B. R. Morton, B. C. McCaig, and M. T. Clegg. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proceedings of the National Academy of Sciences U.S.A. 93:10274–10279.CrossRefGoogle Scholar
  38. Gockel, G., W. Hachtel, S. Baier, C. Fliss, and M. Henke. 1994. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Current Genetics 26:256–262.PubMedCrossRefGoogle Scholar
  39. Gutell, R. R. 1993. Collection of small subunit (16S and 16S-like) ribosomal RNA structures. Nucleic Acids Research 21:3051–3054.PubMedCrossRefGoogle Scholar
  40. Haberhausen, G., and K. Zetsche. 1992. Nucleotide sequences of the rbcL gene and the intergenic promoter region between the divergently transcribed rbcL and atpB genes in Ipomoea purpurea (L.). Plant Molecular Biology 18:823–825.PubMedCrossRefGoogle Scholar
  41. Haberhausen, G., and K. Zetsche. 1994. Functional loss of all ndh genes in an otherwise relatively unaltered plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Plant Molecular Biology 24:217–222.PubMedCrossRefGoogle Scholar
  42. Haberhausen, G. K., Valentin, and K. Zetsche. 1992. Organization and sequence of photosynthetic genes from the plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Molecular and General Genetics 232:154–161.PubMedCrossRefGoogle Scholar
  43. Harms, H. 1935. Hydnoraceae. In Die Natürlichen Pflanzenfamilien, eds. A. Engler and H. Harms, pp. 282–295. W. Engelmann, Leipzig.Google Scholar
  44. Hong, D.-Y. 1984. Taxonomy and evolution of the Veroniceae (Scrophulariaceae) with special reference to palynology. Opera Botanica 75:1–60.Google Scholar
  45. Hull, R. J., and O. A. Leonard. 1964. Physiological aspects of parasitism in mistletoes (Arceuthobium and Phoradendrori). 2. The photosynthetic capacity of mistletoes. Plant Physiology 39:1008–1017.PubMedCrossRefGoogle Scholar
  46. Kellogg, E. A., and N. D. Juliano. 1997. The structure and function of RuBisCo and their implications for systematic studies. American Journal of Botany 84:413–428.PubMedCrossRefGoogle Scholar
  47. Kuijt, J. 1968. Mutual affinities of Santalalean families. Brittonia 20:136–147.CrossRefGoogle Scholar
  48. Kuijt, J. 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley.Google Scholar
  49. Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular Evolutionary Genetics Analysis, version 1.01. The Pennsylvania State University, University Park.Google Scholar
  50. Li, W.-H. 1983. Evolution of duplicate genes and pseudogenes. In Evolution of Genes and Proteins, eds. M. Nei and R. K. Koehn, pp. 14–37. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  51. Machado, M. A., and K. Zetsche. 1990. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181:91–96.CrossRefGoogle Scholar
  52. Maddison, W. P. 1989. Reconstructing character evolution on polytomous cladograms. Cladistics 5:365–377.CrossRefGoogle Scholar
  53. Maddison, W. P., and D. R. Maddison. 1992. MacClade, Analysis of Phylogeny and Character Evolution, version 3.01. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  54. Mayfield, S. P., C. B. Yohn, A. Cohen, and A. Danon. 1995. Regulation of chloroplast gene expression. Annual Review of Plant Physiology and Plant Molecular Biology 46:147–166.CrossRefGoogle Scholar
  55. Minkin, J. P., and W. H. Eshbaugh. 1989. Pollen morphology of the Orobanchaceae and rhinanthoid Scrophulariaceae. Grana 28:1–18.CrossRefGoogle Scholar
  56. Morden, C. W., K. H. Wolfe, C. W. de Pamphilis, and J. D. Palmer. 1991. Plastid translation and transcription genes in a nonphotosynthetic plant: intact, missing and pseudo genes. European Molecular Biology Organization Journal 10:3281–3288.Google Scholar
  57. Muller, J. 1981. Fossil pollen records of extant angiosperms. Botanical Review 47:1–142.CrossRefGoogle Scholar
  58. Musselman, L. J. 1980. The biology of Striga, Orobanche, and other root-parasitic weeds. Annual Review of Phytopathology 18:463–489.CrossRefGoogle Scholar
  59. Nelissen, B., Y. Van de Peer, A. Wilmotte, and R. De Wachter. 1995. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Molecular Biology and Evolution 12:1166–1173.PubMedGoogle Scholar
  60. Nickrent, D. L., and R. J. Duff. 1996. Molecular studies of parasitic plants using ribosomal RNA. In Advances in Parasitic Plant Research, eds. M. T. Moreno, J. I. Cubero, D. Berner, D. Joel, L. J. Musselman, and C. Parker, pp. 28–52. Junta de Andalucia, Direction General de Investigation Agraria, Cordoba, Spain.Google Scholar
  61. Nickrent, D. L., and C. R. Franchina. 1990. Phylogenetic relationships of the Santalales and relatives. Journal of Molecular Evolution 31:294–301.PubMedCrossRefGoogle Scholar
  62. Nickrent, D. L., and D. E. Soltis. 1995. A comparison of angiosperm phylogenies based upon complete 18S rDNA and rbcL sequences. Annals of the Missouri Botanical Garden 82:208–234.CrossRefGoogle Scholar
  63. Nickrent, D. L., and E. M. Starr. 1994. High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. Journal of Molecular Evolution 39:62–70.PubMedCrossRefGoogle Scholar
  64. Nickrent, D. L., Y. Ouyang, and C. W. dePamphilis. 1995. Presence of plastid genes in representatives of the holoparasitic families Balanophoraceae, Hydnoraceae, and Rafflesiaceae. American Journal of Botany (suppl.) 82:75.Google Scholar
  65. Nickrent, D. L., R. J. Duff, and D. A. M. Konings. 1997a. Structural analyses of plastid-encoded 16S rRNAs in holoparasitic angiosperms. Plant Molecular Biology 74:731–743.CrossRefGoogle Scholar
  66. Nickrent, D. L., Y. Ouyang, R. J. Duff, and C. W. dePamphilis. 1997b. Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Molecular Biology 34:717–729.PubMedCrossRefGoogle Scholar
  67. Olmstead, R. G., and P. A. Reeves. 1995. Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Annals of the Missouri Botanical Garden 82:176–193.CrossRefGoogle Scholar
  68. Olsen, G. J. 1987. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symposium on Quantitative Biology 52:825–837.CrossRefGoogle Scholar
  69. Palmer, J. D. 1990. Contrasting modes and tempos of genome evolution in land plant organelles. Trends in Genetics 6:115–120.PubMedCrossRefGoogle Scholar
  70. Palmer, J. D. 1992. Mitochondrial DNA in plant systematics: applications and limitations. In Molecular Plant Systematics, eds. P. S. Soltis, D. E. Soltis, and J. J. Doyle, pp. 36–49. Chapman & Hall, New York.CrossRefGoogle Scholar
  71. Pazy, B., U. Plitmann, and O. Cohen. 1996. Bimodal karyotype in Cynomorium coccineum L. and its systematic implications. Journal of the Linnaean Society, London 120:279–281.Google Scholar
  72. Pennell, F. W. 1935. The Scrophulariaceae of Eastern Temperate North America. Academy of Natural Sciences, Philadelphia.Google Scholar
  73. Press, M. C., and J. D. Graves. 1995. Parasitic Plants. Chapman & Hall, London.Google Scholar
  74. Press, M. C., N. Shah, and G. R. Stewart. 1986. The parasitic habit: trends in metabolic reductionism. In Biology and Control of Orobanche, ed. S. J. ter Borg, pp. 96–106. LH/VPO, Wageningen, Netherlands.Google Scholar
  75. Press, M. C., S. Smith, and G. R. Stewart. 1991. Carbon acquisition and assimilation in parasitic plants. Functional Ecology 5:278–283.CrossRefGoogle Scholar
  76. Price, P. 1980. Evolutionary Biology of Parasites. Monographs in Population Biology No. 15. Princeton University Press, Princeton, New Jersey.Google Scholar
  77. Reed, C. F. 1955. The comparative morphology of the Olacaceae, Opiliaceae, and Octoknemaceae. Memorias da Sociedade Broteriana 10:29–79.Google Scholar
  78. Roy, H., and S. A. Nierzwicki-Bauer. 1991. RuBisCO: genes, structure, assembly, and evolution. In The Photosynthetic Apparatus: Molecular Biology and Operation, eds. L. Bogorad and I. K. Vasil, pp. 347–364. Academic Press, San Diego.CrossRefGoogle Scholar
  79. Schreuder, H. A., S. Knight, P. M. G. Curmi, I. Andersson, D. Cascio, C.-I. Brändén, and D. Eisenberg. 1993. Formation of the active site of ribulose-l,5-bisphosphate carboxylase/oxygenase by a disorder-order transition from the unactivated to the activated form. Proceedings of the National Academy of Sciences U.S.A. 90:9968–9972.CrossRefGoogle Scholar
  80. Schuster, W., R. Ternes, V. Knoop, R. Hiesel, B. Wissinger, and A. Brennicke. 1991. Distribution of RNA editing sites in Oenothera mitochondrial mRNAs and rRNAs. Current Genetics 20:397–404.PubMedCrossRefGoogle Scholar
  81. Shimada, H., and M. Sugiura. 1991. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Research 19:983–995.PubMedCrossRefGoogle Scholar
  82. Sleumer, H. O. 1984. Flora Neotropica. Olacaceae Monograph No 38. New York Botanical Garden, New York.Google Scholar
  83. Solms-Laubach, H. 1894. Hydnoraceae. In Die Natürlichen Planzenfamilien, Part III, eds. A. Engler and K. Prantl, pp. 282–285. W. Engelmann, Leipzig.Google Scholar
  84. Soltis, D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, R. K. Kuzoff, K. A. Kron, M. W. Chase, S. M. Swensen, E. A. Zimmer, S.M. Chaw, L. J. Gillespie, W. J. Kress, and K. J. Sytsma. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Annals of the Missouri Botanical Garden 84:1–49.CrossRefGoogle Scholar
  85. Sper-Whitis, G. L., J. L. Moody, and J. C. Vaughn. 1996. Universality of mitochondrial RNA editing in cytochrome-c oxidase subunit I (coxl) among the land plants. Biochimica Biophysica Acta 1307:301–308.CrossRefGoogle Scholar
  86. Stewart, G. R., and M. C. Press. 1990. The physiology and biochemistry of parasitic angiosperms. Annual Review of Plant Physiology and Plant Molecular Biology 41:127–151.CrossRefGoogle Scholar
  87. Susek, R. E., and J. Chory. 1992. A tale of two genomes: role of a chloroplast signal in coordinating nuclear and plastid genome expression. Australian Journal of Plant Physiology 19:387–399.CrossRefGoogle Scholar
  88. Takhtajan, A. L. 1987. Sistema magnoliofltov [in Russian]. Nauka, Leningrad.Google Scholar
  89. Takhtajan, A. L., N. R. Meyer, and V. N. Kosenko. 1985. Morfologiya pyl’tsy i klassifikatsiya semeystva Rafflesiaceae s. 1. Botanicheskii Zhurnal 70:153–162.Google Scholar
  90. Taylor, G. W., K. H. Wolfe, C. W. Morden, C. W dePamphilis, and J. D. Palmer. 1991. Lack of a functional plastid tRNAcys gene is associated with loss of photosynthesis in a lineage of parasitic plants. Current Genetics 20:515–518.PubMedCrossRefGoogle Scholar
  91. Thalouarn, P., M.-C. Arnaud, and S. Renaudin. 1989. Evidence of ribulose-bisphosphate carboxylase in the Scrophulariaceae holoparasite Lathraea clandestina L. Comptes Rendu Academy of Science Paris 309:275–280.Google Scholar
  92. Thalouarn, P., C. Theodet, and S. Renaudin. 1991. Evidence of plastid and nuclear genes for the large and small subunits of Rubisco in the Scrophulariaceae holoparasite Lathraea clandesiina L. Comparison with the autotroph Digitalis purpurea L. and hemiparasite Melampyrum pratense L. Comptes Rendu Academy of Science Paris 312:1–6.Google Scholar
  93. Thalouarn, P., C. Theodet, N. Russo, and P. Delavault. 1994. The reduced plastid genome of a nonphotosynthetic angiosperm Orobanche hederae has retained the rbcL gene. Plant Physiology and Biochemistry 32:233–242.Google Scholar
  94. Thieret, J. W. 1967. Supraspecific classification in the Scrophulariceae: a review. Sida 387-106.Google Scholar
  95. Thorne, R. F. 1992. An updated phylogenetic classification of the flowering plants. Aliso 13:365–389.Google Scholar
  96. Tocher, R. D., S. W. Gustafson, and D. M. Knutson. 1984. Water metabolism and seedling photosynthesis in dwarf mistletoes. In Biology of Dwarf Mistletoes: Proceedings of the Symposium, eds. F. G. Hawksworth and R. F. Scharpf, pp. 62–69. USDA, Rocky Mt. Forest & Range Experimental Station, Ft. Collins, Colorado.Google Scholar
  97. van der Vies, S. M., P. V. Viitanen, A. A. Gatenby, G. H. Lorimer, and R. Jaenicke. 1992. Conformational states of ribulosebisphosphate carboxylase and their interaction with chaperonin 60. Biochemistry 31:3635–3644.PubMedCrossRefGoogle Scholar
  98. Walsh, M. A., E. A. Rechel and T. M. Popovich. 1980. Observations of plastid fine structure in the holoparasitic angiosperm Epifagus virginiana. American Journal of Botany 67:833–837.CrossRefGoogle Scholar
  99. Weber, H. C. 1980. Evolution of parasitism in Scrophulariceae and Orobanchaceae. Plant Systematics and Evolution 136:217–232.CrossRefGoogle Scholar
  100. Wettstein, R. 1897. Scrophulariceae. In Die Natürlichen Pflanzenfamilien Nachtrage I-IV, eds. A. Engler and K. Prantl, pp. 293–299. W Engelmann, Leipzig.Google Scholar
  101. Wiens, D., and B. A. Barlow. 1971. The cytogeography and relationships of the viscaceous and eremolepidaceous mistletoes. Taxon 20:313–332.CrossRefGoogle Scholar
  102. Wilson, R. J. M., P. W. Denny, P. R. Preiser, K. Rangachari, K. Roberts, A. Roy, A. Whyte, M. Strath, D. J. Moore, P. W. Moore, and D. H. Williamson. 1996. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. Journal of Molecular Biology 261:155–172.PubMedCrossRefGoogle Scholar
  103. Wimpee, C. F., R. L. Wrobel, and D. K. Garvin. 1991. A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant. Plant Molecular Biology 17:161–166.PubMedCrossRefGoogle Scholar
  104. Wimpee, C. F., R. Morgan, and R. L. Wrobel. 1992a. An aberrant plastid ribosomal RNA gene cluster in the root parasite Conopholis Americana. Plant Molecular Biology 18:275–285.PubMedCrossRefGoogle Scholar
  105. Wimpee, C. F, R. Morgan, and R. L. Wronel. 1992b. Loss of transfer RNA genes from the plastid 16S-23S ribosomal RNA gene spacer in a parasitic plant. Current Genetics 21:417–422.PubMedCrossRefGoogle Scholar
  106. Wolfe, A. D., and C. W. dePamphilis. 1995. Systematic implications of relaxed functional constraints on the RUBISCO large subunit in parasitic plants of the Scrophulariaceae and Orobanchaceae. American Journal of Botany (suppl.) 82:6.Google Scholar
  107. Wolfe, A. D., and C. W. dePamphilis. 1997. Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche. Plant Molecular Biology 33:965–977.PubMedCrossRefGoogle Scholar
  108. Wolfe, K. H., D. S. Katz-Downie, C. W. Morden, and J. D. Palmer. 1992a. Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: accelerated sequence evolution, altered promoter structure, and tRNA pseudogenes. Plant Molecular Biology 18:1037–1048.PubMedCrossRefGoogle Scholar
  109. Wolfe, K. H., C. W. Morden, S. C. Ems, and J. D. Palmer. 1992b. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. Journal of Molecular Evolution 35:304–317.PubMedCrossRefGoogle Scholar
  110. Wolfe, K. H., C. W. Morden, and J. D. Palmer. 1992c. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proceedings of the National Academy of Sciences U.S.A. 89:10648–10652.CrossRefGoogle Scholar
  111. Wu, C.-L, and W.-H. Li. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences U.S.A. 82:1741–1745.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

There are no affiliations available

Personalised recommendations