Skip to main content

Bioassays with Marine and Freshwater Macroorganisms

  • Chapter
Methods in Chemical Ecology Volume 2

Abstract

The general methods for extraction, purification, and identification of marine secondary metabolites are similar to, or involve slight modifications of, those used with terrestrial organisms. Marine methodologies for small organic molecules have been reviewed by Norris and Fenical (1985), and those for phlorotannins by Ragan and Glombitza (1986). Many compounds, such as those involved in prey detection, predator detection, and home site selection are less well understood chemically, and general reviews for methodologies dealing with the chemistry of these types of compounds are not available. With the exception of the phlorotannins, the large majority of known secondary metabolites from marine organisms are lipid soluble (Faulkner 1996, and earlier reviews cited therein). This produces significant experimental advantages because known quantities of lipid-soluble metabolites can be dissolved in volatile organic solvents such as diethyl ether and coated at desired concentrations onto surfaces (for tests as settlement cues or antifouling agents); onto palatable prey that have been blotted dry; or onto finely powdered, dried algal or animal tissue that can then be imbedded in a gel matrix (for tests as defenses against consumers see McConnell et al. 1982; Targett et al. 1986; Hay et al. 1987a, 1987b, 1994; Paul 1987, 1992; Henrikson & Pawlik 1995; Schmitt et al. 1995). After the solvent evaporates, these hydrophobic compounds adhere to the treatment surfaces or foods and do not dissolve when immersed in seawater while being used in settlement or feeding assays. Comparisons of feeding or settlement on treatments versus controls (treated with solvent only) allow for a determination of the effects of the compound alone. Modifications of these basic procedures have been applied widely in both field and laboratory investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ache, B.W. 1982. Chemoreception and thermoreception. In: The Biology of Crustacea, Vol. 3, eds. L. Atwood & D.C. Sandeman, pp. 369–398, Academic Press, New York.

    Google Scholar 

  • Alcaraz, M., G.-A. Paffenhöfer & J.R. Strickler. 1980. Catching the algae: a first account of visual observations on filter feeding calanoids. In: Evolution and Ecology of Zooplankton Communities, ed. W.C. Kerfoot, pp. 241–248, University Press of New England, Hanover, NH.

    Google Scholar 

  • Allmon, R.A. & K.P. Sebens. 1988. Feeding biology and ecological impact of an introduced nudibranch, Tritonia plebia, New England, USA. Mar. Biol. 99:375–385.

    Google Scholar 

  • Ammerman, J.W. & F. Azam. 1985. Bacterial 5′ nucleotidase in aquatic ecosystems: a novel mechanism of phosphorous regeneration. Science 227:1338–1340.

    PubMed  CAS  Google Scholar 

  • Anderson, G. & W.E. Dale. 1989. Probopyrus pandalicola (Packard) (Isopoda: Epicaridea): swimming responses of cryptoniscus larvae in water conditioned by hosts Palaemonetes pugio (Holthius) (Decapoda; Palaemonidae). J. Exp. Mar. Biol. Ecol. 130:9–18.

    Google Scholar 

  • Atema, J., K. Holland & W. Ikehara. 1980. Olfactory responses of yellowfin tuna (Thunnus albacares) to prey odors: chemical search image. J. Chem. Ecol. 6:457–465.

    Google Scholar 

  • Atema, J., R.R. Fay, A.N. Popper & W.N. Tavolga, eds. 1988. Sensory Biology of Aquatic Animals. Springer-Verlag, New York.

    Google Scholar 

  • Bak, R.P.M. & J.L.A. Borsboom. 1984. Allelopathic interaction between a reef coelenterate and benthic algae. Oecologia 63:194–198.

    Google Scholar 

  • Bärlocher, F. & S.Y. Newell. 1994. Growth of the salt marsh periwinkle Littoraria irrorata on fungal and cordgrass diets. Mar. Biol. 118:109–114.

    Google Scholar 

  • Barnes, D.J., R.N. Braver & M.R. Jordan. 1970. Locomotory response of Acanathaster planci to various species of coral. Nature 228:342–344.

    PubMed  CAS  Google Scholar 

  • Bernays, E.A. 1991. Relationship between deterrence and toxicity of plant secondary compounds for the grasshopper Schistocerca americana. J. Chem. Ecol. 17:2519–2526.

    CAS  Google Scholar 

  • Bernays, E.A. & R. Chapman. 1987. The evolution of deterrent responses in plant-feeding insects. In: Perspectives in Chemoreception and behavior, eds. R.F. Chapman, E.A. Bernays & J.G. Stoffolano, Jr., pp. 159–173, Springer-Verlag, New York.

    Google Scholar 

  • Bernays, E.A. & M. Cornelius. 1992. Relationship between deterrence and toxicity of plant secondary compounds for the alfalfa weevil Hypera brunneipennis. Entomol. Exp. App. 64:289–292.

    CAS  Google Scholar 

  • Bernays, E.A., G.C. Driver & M. Bilgener. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19:263–302.

    Google Scholar 

  • Boettcher, A.A. & N.M. Targett. 1993. Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74:891–903.

    CAS  Google Scholar 

  • Boiser, R.C. & M.E. Hay. 1996. Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77:2269–2286.

    Google Scholar 

  • Borowsky, B. 1984. Effects of receptive females’ secretions on some male reproductive behavior in the amphipod crustacean Microdeutopus gryllotalpa. Mar. Biol. 84:183–187.

    Google Scholar 

  • Boudreau, B., E. Bourget & Y. Simard. 1993. Behavioral responses of competent lobster postlarvae to odor plumes. Mar. Biol. 117:63–69.

    Google Scholar 

  • Brancato, M.S. & R.M. Woollacott. 1982. Effects of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera, and B. turrita). Mar. Biol. 71:51–56.

    Google Scholar 

  • Branch, G.M. 1984. Limpets: their role in littoral and sublittoral community dynamics. In: The Ecology of Rocky Coasts, eds. P.G. Moore & R. Seed, pp. 97–116, Columbia University, New York.

    Google Scholar 

  • Brown, G.E. & R.J.F. Smith. 1994. Fathead minnows use chemical cues to discriminate natural shoalmates from unfamiliar conspecifics. J. Chem. Ecol. 20:3051–3061.

    CAS  Google Scholar 

  • Bryan, P.J., D. Rittschof & J.B. McClintock. 1996. Bioactivity of echinoderm ethanolic body wall extracts: an assessment of marine bacterial attachment and macroinvertebrate larval settlement. J. Exp. Mar. Biol. Ecol. 196:79–96.

    Google Scholar 

  • Bryant, B.P. & J. Atema. 1987. Diet manipulation affects social behavior of catfish: importance of body odor. J. Chem. Ecol. 12:989–1011.

    Google Scholar 

  • Burke, R.D. 1986. Pheromones and the gregarious settlement of marine invertebrate larvae. Bull. Mar. Sci. 39:323–331.

    Google Scholar 

  • Burritt, E.A. & F.D. Provenza. 1989. Food aversion learning: ability of lambs to distinguish safe from harmful foods. J. Anim. Sci. 67:1732–1739.

    PubMed  CAS  Google Scholar 

  • Buschbaum, R., I. Valiela & T. Swain. 1984. The role of phenolic compounds and other plant constituents in feeding by Canada geese in the coastal marsh. Oecologia 63:343–349.

    Google Scholar 

  • Buskey, E.J. 1984. Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol. 79:165–175.

    Google Scholar 

  • Butman, C.A. 1987. Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. Mar. Biol. Annu. Rev. 25:113–165.

    Google Scholar 

  • Butman, C.A. & J.P. Grassle. 1992. Active habitat selection by Capitella sp. larvae. I. Two-choice experiments in still water and flume flows. J. Mar. Res. 50:669–715.

    Google Scholar 

  • Butman, C.A., J.P. Grassle & C.M. Webb. 1988. Substrate choices made by marine larvae settling in still water and in a flume flow. Nature 333:771–773.

    Google Scholar 

  • Caldwell, R.L. 1979. Cavity occupation and defensive behavior in the stomatopod Gonodactylus festai: evidence for chemically mediated individual recognition. Anim. Behav. 27:194–201.

    Google Scholar 

  • Carpenter, R.C. 1984. Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Mar. Biol. 82:101–108.

    Google Scholar 

  • Carr, W.E.S. & C.D. Derby. 1986a. Chemically stimulated feeding behavior in marine animals: implications of chemical mixtures and involvement of mixture interactions. J. Chem. Ecol. 12:989–1011.

    CAS  Google Scholar 

  • Carr, W.E.S. & C.D. Derby. 1986b. Chemoreception in the shrimp, Palaemonetes pugio, identification of active compounds in food extracts and evidence of synergistic mixture interactions. Chem. Senses 11:49–64.

    CAS  Google Scholar 

  • Carte, B. & D.J. Faulkner. 1986. Role of secondary metabolites in feeding associations between a predatory nudibranch, two grazing nudibranchs, and a bryozoan. J. Chem. Ecol. 12:795–803.

    CAS  Google Scholar 

  • Chanas, B. & J.R. Pawlik. 1995. Defense of Caribbean sponges against predatory reef fish. II. spicules, tissue toughness, and nutritional quality. Mar. Ecol. Prog. Ser. 127:195–211.

    Google Scholar 

  • Chanas, B. & J.R. Pawlik. 1996. Does the skeleton of a sponge provide a defense against predatory reef fish?. Oecologia 107:225–231.

    Google Scholar 

  • Cherry, D.S. & J. Cairns. 1982. Biological monitoring. Part V. Preference and avoidance studies. Wat. Res. 16:263–301.

    Google Scholar 

  • Chivers, D.P., G.E. Brown & R.J.F. Smith. 1995. Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): implications for antipredator behaviour. Can. J. Zool. 73:955–960.

    Google Scholar 

  • Chausen, T.P., F.D. Provenza, E.A. Burritt, P.B. Reichardt & J.P. Bryant. 1990. Ecological implications of condensed tannin structure: a case study. J. Chem. Ecol. 16:2381–2392.

    Google Scholar 

  • Coll, J.C., B.F. Bowden, D.M. Tapiolas, & W.C Dunlap. 1982. In situ isolation of allelochemicals released from soft corals (Coelenterata: Octocorrallia): A totally submersible sampling apparatus. J. Exp. Mar. Biol. Ecol. 60:293–299.

    CAS  Google Scholar 

  • Coll, J.C., I.R. Price, G.M. König & B.F. Bowden. 1987. Algal overgrowth of alcyonacean soft corals. Mar. Biol. 96:129–135.

    Google Scholar 

  • Collins, A.R.S. 1974. Biochemical investigation of two responses involved in the feeding behaviour of Acanthaster planci (L.) I. Assay methods and preliminary results. J. Exp. Mar. Biol. Ecol. 15:173–184.

    Google Scholar 

  • Cooper, J.C. & P.J. Hirsch. 1982. The role of chemoreception in salmonid homing. In: Chemoreception in Fishes, ed. T.J. Hara, pp. 343–362, Elsevier, Amsterdam.

    Google Scholar 

  • Costero, M. & S.P. Meyers. 1993. Evaluation of chemoreception by Penaeus vannamei under experimental conditions. Prog. Fish Culturist 55:157–162.

    Google Scholar 

  • Cronin, G. & M.E. Hay. 1996a. Induction of seaweed chemical defenses by amphipod grazing. Ecology 77:2287–2301.

    Google Scholar 

  • Cronin, G. & M.E. Hay. 1996b. Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105:361–368.

    Google Scholar 

  • Cronin, G. & M.E. Hay. 1996c. Susceptibility to herbivores depends on recent history of both plant and animal. Ecology 77:1531–1543.

    Google Scholar 

  • Cronin, G. & M.E. Hay. 1996d. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos. 77:93–106.

    CAS  Google Scholar 

  • Cronin, G., M.E. Hay, W. Fenical & N. Lindquist. 1995a. Distribution, density, and sequestration of host chemical defenses by the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina. Mar. Ecol. Prog. Ser. 119:177–189.

    CAS  Google Scholar 

  • Cronin, G., N. Lindquist, M.E. Hay & W. Fenical. 1995b. Effects of storage and extraction procedures on yields of lipophilic metabolites from the brown seaweeds Dictyota ciliolate and D. menstrualis. Mar. Ecol. Prog. Ser. 119:265–273.

    Google Scholar 

  • Daldorph, P.W.G. & J.D. Thomas. 1988. The chemical ecology of some British freshwater gastropod molluscs: behavioural responses to short chain carboxylic acids and maltose. Freshwater Biol. 19:167–178.

    CAS  Google Scholar 

  • Daniel, P.C. & R.C. Bayer. 1987a. Attraction of predatorily naive postlarval lobsters to extracts of metabolites of common prey: Mytilus edulis, Mya arenaria, Cancer irroratus, and Asterias vulgaris. J. Chem. Ecol. 13:1201–1215.

    CAS  Google Scholar 

  • Daniel, P.C. & R.C. Bayer. 1987b. Development of chemically mediated prey-search response in postlarval lobsters (Homarus americanus) through feeding experience. J. Chem. Ecol. 13:1217–1233.

    CAS  Google Scholar 

  • Davin, W.T., Jr., C.C. Kohler & D.R. Tindall. 1986. Effects of ciguatera toxins on the bluehead. Trans. Am. Fish. Soc. 115:908–912.

    Google Scholar 

  • Davin, W.T., Jr., C.C. Kohler & D.R. Tindall. 1988. Ciguatera toxins adversely affect piscivorous fishes. Trans. Am. Fish. Soc. 117:374–384.

    CAS  Google Scholar 

  • Davis, A.R., A.J. Butler & I. Van Altena. 1991. Settlement behaviour of ascidian larvae: preliminary evidence for inhibition by sponge allelochemicals. Mar. Ecol. Prog. Ser. 72:117–123.

    CAS  Google Scholar 

  • Decho, A.W. & J.W. Moriarty. 1990. Bacterial exopolymer utilization by a harpacticoid copepod: a methodology and results. Limnol. Oceanogr. 35:1039–1049.

    CAS  Google Scholar 

  • Deibel, D. & G.-A. Paffenhöfer. 1988. Cinematographic analysis of the feeding mechanism of the pelagic tunicate Doliolum nationalis. Bull. Mar. Sci. 43:404–412.

    Google Scholar 

  • DeMott, W.R. & M.D. Watson. 1991. Remote detection of algae by copepods: responses to algal size, odors and motility. J. Plankton Res. 13:1203–1222.

    Google Scholar 

  • de Nys, R., J.C. Coll & I.R. Price. 1991. Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Mar. Biol. 108:315–320.

    Google Scholar 

  • Derby, C.D. & J. Atema. 1988. Chemoreceptor cells in aquatic invertebrates: peripheral mechanisms of chemical signal processing in decapod crustaceans. In: Sensory Biology of Aquatic Animals, eds. J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga, pp. 365–386, Springer-Verlag, New York.

    Google Scholar 

  • De Ruyter van Steveninck, E.D., L.L. Van Mulekom & A.M. Breeman. 1988. Growth and inhibition of Lobophora variegate (Lamouroux) Womersley by scleractinian corals. J. Exp. Mar. Biol. Ecol. 115:169–178.

    Google Scholar 

  • Distel, R.A. & F.D. Provenza. 1991. Experience early in life affects voluntary intake of blackbrush by goats. J. Chem. Ecol. 17:431–450.

    Google Scholar 

  • Dittman, A.H. & T.P. Quinn. 1996. Homing in pacific salmon: mechanisms and ecological basis. J. Exp. Biol. 199:83–91.

    PubMed  Google Scholar 

  • Dittman, A.H., H. Quinn & G.A. Nevitt. 1996. Timing of imprinting to natural and artificial odors by coho salmon, Oncorhynchus kisutch. Can. J. Fish. Aquat. Sci. 53:434–447.

    Google Scholar 

  • Dodson, J.J. & M.E. Bitterman. 1989. Compound uniqueness and the interactive role of morpholine in fish chemoreception. Biol. Behav. 14:13–27.

    Google Scholar 

  • Dodson, S.I. 1989. The ecological role of chemical stimuli for the Zooplankton: predator induced morphology in Daphnia. Oecologia 78:361–367.

    Google Scholar 

  • Duffy, J.E. 1990. Amphipods on seaweeds: partners or pests?. Oecologia 83:267–276.

    PubMed  CAS  Google Scholar 

  • Duffy, J.E. & M.E. Hay. 1991. Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72:1286–1298.

    Google Scholar 

  • Duffy, J.E. & M.E. Hay. 1994. Herbivore resistance to seaweed chemical defense: the role of mobility and predation risk. Ecology 75:1304–1319.

    Google Scholar 

  • Duffy, J.E. & V.J. Paul. 1992. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339.

    Google Scholar 

  • Dunham, P.J. 1978. Sex pheromones in Crustacea. Biol. Rev. 53:555–583.

    CAS  Google Scholar 

  • Durante, K.M. 1991. Larval behavior, settlement preference, and induction of metamorphosis in the temperate solitary ascidian Molgula citrina Alder & Hancock. J. Exp. Mar. Biol. Ecol. 145:175–187.

    Google Scholar 

  • Eckman, J.E. 1983. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28:241–257.

    Google Scholar 

  • Fagerlund, U.H.M., J.R. McBride, M. Smith & N. Tomlinson. 1963. Olfactory perception in migrating salmon. III. Stimulants for adult sockeye salmon (Oncorhynchus nerka) in home stream waters. J. Fish. Res. Board Can. 20:1457–1463.

    Google Scholar 

  • Faulkner, D.J. 1996. Marine natural products. Nat. Prod. Rept. 13:75–125.

    CAS  Google Scholar 

  • Folin, O. & W. Denis. 1915. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 22:305–308.

    CAS  Google Scholar 

  • Forward, Jr., R.B. & K.J. Lohmann. 1983. Control of egg hatching in the crab Rhithropanopeus harrisii (Gould). Biol. Bull. 165:154–166.

    Google Scholar 

  • Gallager, S.M. 1988. Visual observation of particle manipulation during feeding in larvae of a bivalve mollusc. Bull. Mar. Sci. 43:344–365.

    Google Scholar 

  • Gates, J.E. & W.B. Wilson. 1960. The toxicity of Gonyaulax monilata Howell to Mugil cephalus. Limnol. Oceanogr. 5:171–174.

    Google Scholar 

  • Gerhart, D.J. 1984. Prostaglandin A2: an agent of chemical defense in the Caribbean gorgonian Plexaura homomalla. Mar. Ecol. Prog. Ser. 19:181–187.

    CAS  Google Scholar 

  • Gerhart, D.J., D. Rittschof & S.W. Mayo. 1988. Chemical ecology and the search for marine antifoulants. Studies of a predator-prey symbiosis. J. Chem. Ecol. 14:1905–1917.

    CAS  Google Scholar 

  • Giattina, J.D. & R.R. Garton. 1983. A review of the preference-avoidance responses of fishes to aquatic contaminants. Residue Rev. 87:43–90.

    PubMed  CAS  Google Scholar 

  • Giattina, J.D., R.R. Garton & D.G. Stevens. 1982. Avoidance of copper and nickel by rainbow trout as monitored by a computer-based data acquisition system. Trans. Am. Fish. Soc. 111:491–504.

    CAS  Google Scholar 

  • Gil-Turnes, M.S., M.E. Hay & W. Fenical. 1989. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118.

    PubMed  CAS  Google Scholar 

  • Gilbert, J.J. 1966. Rotifer ecology and embryological induction. Science 151:1234–1237.

    PubMed  CAS  Google Scholar 

  • Goodbody, I. 1961. Inhibition of the development of a marine sessile community. Nature 190:282–283.

    Google Scholar 

  • Gosselin, S., L. Fortier & J.A. Gagné. 1989. Vulnerability of marine fish larvae to the toxic dinoflagellate Protogonyaulax tamarensis. Mar. Ecol. Prog. Ser. 57:1–10.

    Google Scholar 

  • Grant, J.W.G. & I.A.E. Bayly. 1981. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26:201–218.

    Google Scholar 

  • Hadfield, M.G. & D. Scheuer. 1985. Evidence for a soluble metamorphic inducer in Phestilla: ecological, chemical, and biological data. Bull. Mar. Sci. 37:556–566.

    Google Scholar 

  • Halstead, B.W. 1978. Poisonous and Venomous Marine Animals of the World. Darwin Press, Princeton, NJ.

    Google Scholar 

  • Hanlon, R.T. & J.B. Messenger. 1996. Cephalopod Behaviour. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hara, T.J. 1982. Structure-activity relationships of amino acids as olfactory stimuli. In: Chemoreception in Fishes, ed. T.J. Hara, pp. 29–57, Elsevier, Amsterdam.

    Google Scholar 

  • Harpaz, S., D. Kahan, R. Galun & I. Moore. 1987. Responses of freshwater prawn, Macrobrachium rosenbergii, to chemical attractants. J. Chem. Ecol. 13:1957–1965.

    CAS  Google Scholar 

  • Harvell, C.D. 1986. The ecology and evolution of inducible defenses in a marine bryozoan: cues, costs and consequences. Am. Nat. 128:810–823.

    Google Scholar 

  • Harvell, C.D. 1990. The ecology and evolution of inducible defenses. Quart. Rev. Biol. 65:323–337.

    PubMed  CAS  Google Scholar 

  • Harvell, C.D. 1992. Inducible defenses and allocation shifts in a marine bryozoan. Ecology 73:1567–1576.

    Google Scholar 

  • Harvell, C.D., W. Fenical & C.H. Green. 1988. Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.). I. development of an in situ feeding assay. Mar. Ecol. Prog. Ser. 49:287–294.

    Google Scholar 

  • Harvell, C.D., W. Fenical, V. Roussis, J.L. Ruesink, C.C. Griggs & C.H. Greene. 1993. Local and geographic variation in the defensive chemistry of a West Indian gorgonian coral (Briareum asbestinum). Mar. Ecol. Prog. Ser. 93:165–173.

    CAS  Google Scholar 

  • Hasler, A.D. & A.T. Scholz. 1983. Olfactory Imprinting and Homing in Salmon. Springer-Verlag. Berlin.

    Google Scholar 

  • Hay, M.E. 1981. The functional morphology of turf forming seaweeds: persistence in stressful marine habitats. Ecology 62:739–750.

    Google Scholar 

  • Hay, M.E. 1984. Predictable spatial escapes from herbivory: how do these affect the evolution of herbivore resistance in tropical marine communities?. Oecologia 64:396–407.

    Google Scholar 

  • Hay, M.E. 1985. Spatial patterns of herbivore impact and their importance in maintaining algal species richness. Proc. Fifth Int. Coral Reef Congr. 4:29–34.

    Google Scholar 

  • Hay, M.E. 1986. Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Am. Nat. 128:617–641.

    Google Scholar 

  • Hay, M.E. 1991. Fish-seaweed interactions on coral reefs: effects of herbivorous fishes and adaptations of their prey. In: The Ecology of Fishes on Coral Reefs, ed. P. F. Sale, pp. 96–119, Academic Press, San Diego, California, USA.

    Google Scholar 

  • Hay, M.E. 1992. Seaweed chemical defenses: their role in the evolution of feeding specialization and in mediating complex interactions. In: Ecological Roles for Marine Secondary Metabolites; Explorations in Chemical Ecology Series, ed. V.J. Paul, pp. 93–118, Comstock, Ithaca.

    Google Scholar 

  • Hay, M.E. 1996a. Defensive synergisms? A reply to Pennings. Ecology 77:1950–1952.

    Google Scholar 

  • Hay, M.E. 1996b. Marine chemical ecology: what’s known and what’s next?. J. Exp. Mar. Biol. Ecol. 200:103–134.

    CAS  Google Scholar 

  • Hay, M.E. & W. Fenical. 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Ann. Rev. Ecol. Syst. 19:111–145.

    Google Scholar 

  • Hay, M.E. & W. Fenical. 1996. Chemical ecology and marine biodiversity: insights and products from the sea. Oceanography 9:10–20.

    Google Scholar 

  • Hay, M.E. & P.D. Steinberg. 1992. The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In: Herbivores: Their Interaction with Secondary Plant Metabolites, Vol. II, Evolutionary and Ecological Processes, 2nd ed., eds.G. Rosenthal & M. Berenbaum, pp. 371–413, Academic Press, San Diego.

    Google Scholar 

  • Hay, M.E., T. Colburn & D. Downing. 1983. Spatial and temporal patterns in herbivory on a Caribbean fringing reef: the effects on plant distribution. Oecologia 58:299–308.

    Google Scholar 

  • Hay, M.E., W. Fenical & K. Gustafson. 1987a. Chemical defense against diverse coral reef herbivores. Ecology 68:1581–1591.

    CAS  Google Scholar 

  • Hay, M.E., J.E. Duffy & C.A. Pfister. 1987b. Chemical defense against different marine herbivores: are amphipods insect equivalents?. Ecology 68:1567–1580.

    CAS  Google Scholar 

  • Hay, M.E., J.E. Duffy & W. Fenical. 1988a. Seaweed chemical defenses: among-compound and among-herbivore variance. Proc. Sixth Int. Coral Reef Symp. 3:43–48.

    Google Scholar 

  • Hay, M.E., J.E. Duffy, W. Fenical & K. Gustafson. 1988b. Chemical defense in the seaweed Dictyopteris delicatula: differential effects against reef fishes and amphipods. Mar. Ecol. Prog. Ser. 48:185–192.

    Google Scholar 

  • Hay, M.E., V.J. Paul, S.M. Lewis, K. Gustafson, J. Tucker & R.N. Trindell. 1988c. Can tropical seaweeds reduce herbivory by growing at night? diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologia 75:233–245.

    Google Scholar 

  • Hay, M.E., P.E. Renaud & W. Fenical. 1988d. Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. Oecologia 75:246–252.

    Google Scholar 

  • Hay, M.E., J.R. Pawlik, J.E. Duffy & W. Fenical. 1989. Seaweed-herbivore-predator interactions: host-plant specialization reduces predation on small herbivores. Oecologia 81:418–427.

    Google Scholar 

  • Hay, M.E., J.E. Duffy & W. Fenical. 1990a. Host-plant specialization decreases predation on a marine amphipod: an herbivore in plant’s clothing. Ecology 71:733–743.

    Google Scholar 

  • Hay, M.E., J.E. Duffy, V.J. Paul, P.E. Renaud & W. Fenical. 1990b. Specialist herbivores reduce their susceptibility to predation by feeding on the chemically-defended seaweed Avrainvillea longicaulis. Limnol. Oceanogr. 35:1734–1743

    Google Scholar 

  • Hay, M.E., Q. Kappel & W. Fenical. 1994. Synergisms in plant defenses against herbivores: interactions of chemical defenses, calcification, and plant quality. Ecology 75:1714–1726.

    Google Scholar 

  • Henrikson, A.A. & J.R. Pawlik. 1995. A new antifouling assay method: results from field experiments using extracts of four marine organisms. J. Exp. Mar. Biol. Ecol. 194:157–165.

    Google Scholar 

  • Hessinger, D.A. & H.M. Lenhoff. eds. The Biology of Nematocysts. Academic Press, San Diego.

    Google Scholar 

  • Hews, D.K. 1988. Alarm response in larval western toads, Bufo boreas: release of larval chemicals by a natural predator and its effect on predator capture efficiency. Anim. Behav. 36:125–133.

    Google Scholar 

  • Himmelman, J.H. 1988. Movement of whelks (Buccinum undulatum) toward a baited trap. Mar. Biol. 97:521–531.

    Google Scholar 

  • Hollibaugh, J.T. 1979. Metabolic adaptation in natural bacterial populations supplemented with selected amino acids. Estuarine Coastal Mar. Sci. 9:215–230.

    CAS  Google Scholar 

  • Horn, M.H. 1989. Biology of marine herbivorous fishes. Oceanogr. Mar. Biol. Ann. Rev. 27:167–272.

    Google Scholar 

  • Howe, N.R. & Y.M. Sheikh. 1975. Anthopleurine: a sea anemone alarm pheromone. Science 189:386–389.

    PubMed  CAS  Google Scholar 

  • Hubbard, E.J.A. 1988. Larval growth and the induction of metamorphosis of a tropical sponge-eating nudibranch. J. Molluscan Stud. 54:259–269.

    Google Scholar 

  • Huntley, M., P. Sykes, S. Rohan & V. Marin. 1986. Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance. Mar. Ecol. Prog. Ser. 28:105–120.

    Google Scholar 

  • Huntley, M.E., P. Ciminello & M.D.G. Lopez. 1987. Importance of food quality in determining development and survival of Calanus pacificus (Copepoda: Calanoida). Mar. Biol. 95:103–113.

    Google Scholar 

  • Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54:187–211.

    Google Scholar 

  • Idler, D.R., J.R. McBride, R.E.E. Jonas & N. Tomlinson. 1961. Olfactory perception in migrating salmon. II. Studies on a laboratory bio-assay for home-stream water and mammalian repellent. Can. J. Biochem. Physiol. 29:1575–1584.

    Google Scholar 

  • Ireland, C.D. & M.H. Horn. 1991. Effects of macrophyte secondary chemicals on food choice and digestive efficiency of Cebidichthys violaceus (Girard), an herbivorous fish of temperate marine waters. J. Exp. Mar. Biol. Ecol. 153:179–194.

    Google Scholar 

  • Ives, J.D. 1985. The relationship between Gonyaulax tamarensis cell toxin levels and copepod ingestion rates. In: Toxic Dinoflagellates. Proc. 3rd Int. Conf., eds. D.M. Anderson, A.W. White & D.G. Baden, pp. 413–418, Elsevier, New York.

    Google Scholar 

  • Ives, J.D. 1987. Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. J. Exp. Mar. Biol. Ecol. 112:131–145.

    Google Scholar 

  • Jensen, R.A. & D.E. Morse. 1984. Intraspecific facilitation of larval recruitment: gregarious settlement of the polychaete Phragmatopoma californica (Fewkes). J. Exp. Mar. Biol. Ecol. 83:107–126.

    Google Scholar 

  • Jones, D.A., J.G. Munford & P.A. Gabbott. 1974. Microcapsules as artificial food particles for aquatic filter feeders. Nature 247:233–235.

    CAS  Google Scholar 

  • Jones, D.A., A. Kanazawa & K. Ono. 1979. Studies on the nutritional requirements of the larval stages of Penaeus japonicus using microencapsulated diets. Mar. Biol. 54:261–267.

    CAS  Google Scholar 

  • Jones, K.A. & T.J. Hara. 1985. Behavioural responses of fishes to chemical cues: results from a new bioassay. J. Fish Biol. 27:495–504.

    CAS  Google Scholar 

  • Kats, L.B., J.W. Petranka & A. Sih. 1988. Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology 69:1865–1970.

    Google Scholar 

  • Kern, W.R. 1988. Worm toxins. In: Handbook of Natural Toxins: Marine Toxins and Venoms, Vol. 3, ed. A.T. Tu, pp. 353–378, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Kerr, J.N.Q. & V.J. Paul. 1995. Animal-plant defense association: the soft coral Sinularia sp. (Cnidaria, Alcyonacea) protects Halimeda species from herbivory. J. Exp. Mar. Biol. Ecol. 186:183–205.

    Google Scholar 

  • Knight-Jones, E.W. 1951. Gregariousness and some other aspects of settling behavior of Spirorbis. J. Mar. Biol. Assoc. UK 30:201–222.

    Google Scholar 

  • Knight-Jones, E.W. 1953. Laboratory experiments on gregariousness during settling in Balanus balanoides and other barnacles. J. Exp. Biol. 30:584–599.

    CAS  Google Scholar 

  • Knutsen, J.A. 1992. Feeding behavior of North Sea turbot (Scopthalmus maximus) and Dover sole (Solea solea) larvae elicited by chemical stimuli. Mar. Biol. 113:543–548.

    CAS  Google Scholar 

  • Kobayashi, M., J. Kobayashi & Y. Ohizumi. 1989. Cone shell toxins and the mechanisms of their pharmacological action. Bioorg. Mar. Chem. 3:71–84.

    CAS  Google Scholar 

  • Krueger, D.A. & S.I. Dodson. 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26:219–223.

    Google Scholar 

  • Kvitek, R.G. 1991. Sequestered paralytic shellfish poisoning toxins mediate glaucous-winged gull predation on bivalve prey. Auk 108:381–392.

    Google Scholar 

  • Kvitek, R.G., A.R. DeGange & M.K. Beitler. 1991. Paralytic shellfish poisoning toxins mediate feeding behavior of sea otters. Limnol. Oceanogr. 36:393–404.

    CAS  Google Scholar 

  • La Barre, S.C., J.C. Coll & P.W. Sammarco. 1986. Competitive strategies of soft corals (Coelenterata: Octocorallia): III. Spacing and aggressive interactions between alcyonaceans. Mar. Ecol. Prog. Ser. 28:147–156.

    Google Scholar 

  • Lawrence, J.M. 1991. A chemical alarm response in Pycnopodia helianthoides (Echinodermata: Asteroidea). Mar. Behav. Physiol. 19:39–44.

    Google Scholar 

  • Lenhoff, H.M. 1983. Hydra: Research Methods. Plenum Press, New York.

    Google Scholar 

  • Leone, P.A., B.F. Bowden, A.R. Carroll, & J.C. Coll. 1995. Chemical consequences of relocation of the soft coral Lobophytum compactum and its placement in contact with the red alga Plocamium hamatum. Mar. Biol. 122:675–679.

    CAS  Google Scholar 

  • Lewis, S.M., J.N. Norris & R.B. Searles. 1987. The regulation of morphological plasticity in tropical reef algae by herbivory. Ecology 68:636–641.

    Google Scholar 

  • Lindquist, N. 1996. Palatability of invertebrate larvae to corals and sea anemones. Mar. Biol. 126:745–755.

    Google Scholar 

  • Lindquist, N. & M.E. Hay. 1995. Can small rare prey be chemically defended? The case for marine larvae. Ecology 76:1347–1358.

    Google Scholar 

  • Lindquist, N. & M.E. Hay. 1996. Palatability and chemical defenses of marine invertebrate larvae. Ecol. Monogr. 66:431–450.

    Google Scholar 

  • Lindquist, N., M.E. Hay & W. Fenical. 1992. Defense of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. Ecol. Monogr. 62:547–568.

    Google Scholar 

  • Littler, M.M., P.R. Taylor & D.S. Littler. 1986. Plant defense associations in the marine environment. Coral Reefs 5:63–71.

    Google Scholar 

  • Lubchenco, J. & J. Cubit. 1980. Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61:676–687.

    Google Scholar 

  • Luczkovich, J.J. 1988. The role of prey detection in the selection of prey by pinfish Lagodon rhomboides (Linnaeus). J. Exp. Mar. Biol. Ecol. 123:15–30.

    Google Scholar 

  • Lumbang, W.A. & V.J. Paul. 1996. Chemical defense of the tropical green seaweed Neomeris annulata Dickie: effects of multiple compounds on feeding by herbivores. J. Exp. Mar. Biol. Ecol. 201:185–195.

    CAS  Google Scholar 

  • Magnelia, S.J., C.C. Kohler & D.R. Tindall. 1992. Acanthurids do not avoid consuming cultured toxic dinoflagellates yet do not become ciguatoxic. Trans. Am. Fish. Soc. 121:737–745.

    Google Scholar 

  • Manahan, D.T., S.H. Wright & G.C. Stephens. 1983. Simultaneous determination of net uptake of 16 amino acids by a marine bivalve. Am. J. Physiol. 244:R832–R838.

    PubMed  CAS  Google Scholar 

  • Marsden, J.R. 1987. Coral preference behaviour by planktonic larvae of Spirobranchus giganteus corniculatus (Serpulidae: Polychaeta). Coral Reefs 6:71–74.

    Google Scholar 

  • Marsden, J.R., B.E. Conlin & W. Hunte. 1990. Habitat selection in the tropical polychaete Spirobranchus giganteus. II. Larval preferences for corals. Mar. Biol. 104:93–99.

    Google Scholar 

  • Martel, G. & L.M. Dill. 1993. Feeding and aggressive behaviors in juvenile coho salmon (Oncorynchus kisutch) under chemically-mediated risk of predation. Behav. Ecol. Sociobiol. 32:365–370.

    Google Scholar 

  • Mathis, A. & R.J.F. Smith. 1993a. Chemical alarm signals increase the survival time of fathead minnows (Pimephales promelas) during encounters with northern pike (Esox lucius). Behav. Ecol. 4:260–265.

    Google Scholar 

  • Mathis, A. & R.J.F. Smith. 1993b. Intraspecific and cross-superorder responses to chemical alarm signals by brook stickleback. Ecology 74:2395–2404.

    Google Scholar 

  • Mathis, A., D.P. Chivers & R.J.F. Smith. 1995. Chemical alarm signals: predator deterrents or predator attractants. Am. Nat. 145:994–1005.

    Google Scholar 

  • McClintock, J.B. & J. Janssen. 1990. Pteropod abduction as a chemical defense in a pelagic antarctic amphipod. Nature 346:462–464.

    Google Scholar 

  • McClintock, J.B., M. Slattery, J. Heine & J. Weston. 1992. Chemical defense, biochemical composition and energy content of three shallow-water Antarctic gastropods. Polar Biol. 11:623–629.

    Google Scholar 

  • McClintock, J.B., B.J. Baker, M. Slattery, M. Hamann, R. Kopitkze & J. Heine. 1994. Chemotactic tube-foot responses of a spongivorous sea star Perknaster fuscus to organic extracts from Antarctic sponges. J. Chem. Ecol. 20:859–870.

    Google Scholar 

  • McConnell, O.J., P.A. Hughes, N.M. Targett & J. Daley. 1982. Effects of secondary metabolites on feeding by the sea urchin, Lytechinus variegatus. J. Chem. Ecol. 8:1437–1453.

    CAS  Google Scholar 

  • McCosker, J.E. 1975. Feeding behavior of Indo-Australian Hydrophyiidae. In: The biology of sea snakes, ed. W.A. Dunson, pp. 217–232, University Park Press, Baltimore.

    Google Scholar 

  • Meier, J. & J. White. 1995. Handbook of clinical toxicology of animal venoms and poisons. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Meyer, K.D. & V.J. Paul. 1992. Intraplant variation in secondary metabolite concentration in three species of Caulerpa (Chlorophyta: Caulerpales) and its effects on herbivorous fishes. Mar. Ecol. Prog. Ser. 82:249–257.

    CAS  Google Scholar 

  • Meyer, K.D. & V.J. Paul. 1995. Variation in secondary metabolite and aragonite concentrations in the tropical green seaweed Neomeris annulata: effects on herbivory by fishes. Mar. Biol. 122:537–545.

    CAS  Google Scholar 

  • Meyer, K.D., V.J. Paul, H.R. Sanger & S.G. Nelson. 1994. Effects of seaweed extracts and secondary metabolites on feeding by the herbivorous surgeonfish Naso lituratus. Coral Reefs 13:105–112.

    Google Scholar 

  • Moore, P.A., & J. Atema. 1991. Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol. Bull. 181:408–418.

    Google Scholar 

  • Moore, P.A., M.J. Weissburg, J.M. Parrish, R.K. Zimmer-Faust & G.A. Gerhardt. 1994. Spatial distribution of odors in simulated benthic boundary layer flows. J. Chem. Ecol. 20:255–279.

    CAS  Google Scholar 

  • Newman, R.M., W.C. Kerfoot & Z. Hanscom, III. 1990. Watercress and amphipods: potential chemical defense in a spring stream macrophyte. J. Chem. Ecol. 16:245–259.

    CAS  Google Scholar 

  • Norris, J.N. & W. Fenical. 1985. Natural products chemistry: uses in ecology and systematics. In: Handbook of Phycological Methods, Ecological Field Methods: Macroalgae, eds. M.M. Littler & D.S. Littler, pp. 121–145, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nowell, A.R.M. & P.A. Jumars. 1987. Flumes: theoretical and experimental considerations for simulation of benthic environments. Oceanogr. Mar. Biol. Ann. Rev. 25:91–112.

    Google Scholar 

  • Ogura, N. 1975. Further studies on decomposition of dissolved organic matter in coastal seawater. Mar. Biol. 31:101–111.

    CAS  Google Scholar 

  • Olivera, B.M., W.R. Gray & L.J. Cruz. 1988. Marine snail venoms. In: Handbook of Natural Toxins, Marine Toxins and Venoms, Vol. 3, ed. A.T. Tu, pp. 327–352, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Paerl, H.W. 1988. Nuisance phytoplankton blooms in coatal, estuarine, and inland waters. Limnol. Oceanogr. 33:823–847.

    CAS  Google Scholar 

  • Paul, V.J. 1987. Feeding deterrent effects of algal natural products. Bull. Mar. Sci. 41:514–522.

    Google Scholar 

  • Paul, V.J., ed. 1992. Ecological Roles of Marine Natural Products. Comstock, Ithaca, NY.

    Google Scholar 

  • Paul, V.J. & W. Fenical. 1986. Chemical defense in tropical green algae, order Caulerpales. Mar. Ecol. Prog. Ser. 34:157–169.

    CAS  Google Scholar 

  • Paul, V.J. & M.E. Hay. 1986. Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar. Ecol. Prog. Ser. 33:255–264.

    CAS  Google Scholar 

  • Paul, V.J. & K.L. Van Alstyne. 1992. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160:191–203.

    CAS  Google Scholar 

  • Paul, V.J., M.E. Hay, J.E. Duffy, W. Fenical & K. Gustafson. 1987. Chemical defense in the seaweed Ochtodes secundiramea (Montagne) Howe (Rhodophyta): effects of its monoterpenoid components upon diverse coral-reef herbivores. J. Exp. Mar. Biol. Ecol. 114:249–260.

    CAS  Google Scholar 

  • Paul, V.J., C.R. Wylie & H.R. Sänger. 1988. Effects of algal chemical defenses toward different coral-reef herbivorous fishes. Proc. Sixth Int. Coral Reef Symp. 3:73–78.

    Google Scholar 

  • Pawlik, J.R. 1989. Larvae of the sea hare Apylsia californica settle and metamorphose on an assortment of macroalgal species. Mar. Ecol. Prog. Ser. 51:195–199.

    Google Scholar 

  • Pawlik, J.R. 1990. Natural and artificial induction of metamorphosis of Phragmatopoma lapidosa californica (Polychaeta: Sabellariidae), with a critical look at the effects of bioactive compounds on marine invertebrate larvae. Bull. Mar. Sci. 46:512–536.

    Google Scholar 

  • Pawlik, J.R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Annu. Rev. 30:273–335.

    Google Scholar 

  • Pawlik, J.R. 1993. Marine invertebrate chemical defenses. Chem. Rev. 93:1911–1922.

    CAS  Google Scholar 

  • Pawlik, J.R. & W. Fenical. 1989. A re-evaluation of the ichthyodeterrent role of prostaglandins in the Caribbean gorgonian coral Plexaura homomalla. Mar. Ecol. Prog. Ser. 52:95–98.

    CAS  Google Scholar 

  • Pawlik, J.R., M.T. Burch & W. Fenical 1987. Patterns of chemical defenses among Caribbean gorgonian corals: a preliminary survey. J. Exp. Mar. Biol. Ecol. 108:55–66.

    Google Scholar 

  • Pawlik, J.R., C.A. Butman & V.R. Starczak. 1991. Hydrodynamic facilitation of gregarious settlement of a reef-building tube worm. Science 251:421–424.

    PubMed  CAS  Google Scholar 

  • Pawlik, J.R., B. Chanas, R.J. Toonen & W. Fenical. 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127:183–194.

    CAS  Google Scholar 

  • Peckarsky, B.L. 1980. Predator-prey interaction between stoneflies and mayflies: behavioral observations. Ecology 61:932–943.

    Google Scholar 

  • Peckol, P., J.M. Krane & J.L. Yates. 1996. Interactive effects of inducible defenses and resource availability on phlorotannins in the north Atlantic brown algae Fucus vesiculosus. Mar. Ecol. Prog. Ser. 138:209–217.

    CAS  Google Scholar 

  • Pennings, S.C. 1990. Multiple factors promoting narrow host range in the sea hare, Aplysia californica. Oecologia 82:192–200.

    Google Scholar 

  • Pennings, S.C. 1996. Testing for synergisms between chemical and mineral defenses— a comment. Ecology 77:1948–1949.

    Google Scholar 

  • Pennings, S.C. & V.J. Paul. 1992. Effects of plant toughness, calcification and chemistry on herbivory by Dolabella auricularia. Ecology 73:1606–1619.

    Google Scholar 

  • Pennings, S.C., S.R. Pablo, V.J. Paul & J.E. Duffy. 1994. Effects of sponge secondary metabolites in different diets on feeding by three groups of consumers. J. Exp. Mar. Biol. Ecol. 180:137–149.

    Google Scholar 

  • Pennings, S.C., M.P. Puglisi, T.J. Pitlik, A.C. Himaya & V.J. Paul. 1996. Effects of secondary metabolites and CaCO3 on feeding by surgeonfishes and parrotfishes: within-plant comparisons. Mar. Ecol. Prog. Ser. 134:49–58.

    CAS  Google Scholar 

  • Pennington, J.T. & M.G. Hadfield. 1989. Larvae of a nudibranch mollusc (Phestilla sibogae) metamorphose when exposed to common organic solvents. Biol. Bull. 177:350–355.

    CAS  Google Scholar 

  • Peterson, C.H. & P.E. Renaud. 1989. Analysis of feeding preference experiments. Oecologia 80:82–86.

    Google Scholar 

  • Petranka, J.W., L.B. Kats & A. Sih. 1987. Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim. Behav. 35:420–425.

    Google Scholar 

  • Pfeiffer, W. 1977. The distribution of fright reaction and alarm substance cells in fishes. Copeia 1977:653–655.

    Google Scholar 

  • Pfeiffer, W., G. Riegelbauer, G. Meier & B. Scheibler. 1985. Effect of hypoxanthine-3(N)-oxide on central nervous excitation of the black tetra Gymnocorymbus ternetzi (Characidae, Ostariophysi, Pices) indicated by dorsal light response. J. Chem. Ecol. 11:507–523.

    CAS  Google Scholar 

  • Pfister, C.A. & M.E. Hay. 1988. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77:118–129.

    Google Scholar 

  • Porter, J.W. & N.M. Targett. 1988. Allelochemical interactions between sponges and corals. Biol. Bull. 175:230–239.

    Google Scholar 

  • Poulet, S.A. & P. Marsot. 1978. Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea). Science 200:1403–1405.

    PubMed  CAS  Google Scholar 

  • Poulet, A.A. & P. Marsot. 1980. Chemosensory feeding and food-gathering by omnivorous marine copepods. In: The Evolution and Ecology of Zooplankton Communities, ed. W.C. Kerfoot, pp. 198–218, University Press of New England, Hanover, NH.

    Google Scholar 

  • Price, H.J., G. Paffenhöfer & J.R. Strickler. 1983. Modes of cell capture in calanoid copepods. Limnol. Oceanogr. 28:116–123.

    Google Scholar 

  • Provenza, F.D. & D.F. Balph. 1987. Diet learning by domestic ruminants: theory, evidence and practical implications. Appl. Anim. Behav. Sci. 18:211–232.

    Google Scholar 

  • Provenza, F.D. & J.C. Malechek. 1986. A comparison of food selection and foraging behavior in juvenile and adult goats. Appl. Anim. Behav. Sci. 16:49–61.

    Google Scholar 

  • Provenza, F.D., E.A. Burritt, T.P. Clausen, J.P. Bryant, P.B. Reichardt & R.A. Distel. 1990. Conditioned flavor aversion: a mechanism for goats to avoid condensed tannins in black brush. Am. Nat. 136:810–828.

    Google Scholar 

  • Ragan, M.A. & K.W. Glombitza. 1986. Phlorotannins, brown algal polyphenols. In: Progress in Phycological Research, Vol. 4, eds. F.E. Round & DJ. Chapman, pp. 129–241, Biopress Limited, Bristol, England.

    Google Scholar 

  • Raimondi, P.T. 1988. Settlement cues and determination of the vertical limit of an intertidal barnacle. Ecology 69:400–407.

    Google Scholar 

  • Ray, S.M. & D.V. Aldrich. 1967. Ecological interactions of toxic dinoflagellates and mollusks in the Gulf of Mexico. In: Animal Toxins, eds. F.E. Russell & P.R. Saunders, pp. 75–83, Pergamon, Oxford.

    Google Scholar 

  • Regnault, M. 1981. Respiration and ammonia excretion of the shrimp Crangon crangon L: metabolic response to prolonged starvation. J. Comp. Physiol. 141B:549–555.

    Google Scholar 

  • Rehnberg, B.G. & C.B. Schreck. 1987. Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): behavioral reaction and the physiological stress response. Can. J. Zool. 65:481–485.

    CAS  Google Scholar 

  • Reiswig, H.M. 1970. Porifera: sudden sperm release by tropical Demospongiae. Science 170:538–539.

    PubMed  CAS  Google Scholar 

  • Renaud, P.E., M.E. Hay & T.M. Schmitt. 1990. Interactions of plant stress and herbivory: intraspecific variation in the susceptibility of a palatable versus an unpalatable seaweed to sea urchin grazing. Oecologia 82:217–226.

    Google Scholar 

  • Ricker W.E. 1972. Hereditary and environmental factors affecting certain salmonid populations. In: The Stock Concept in Pacific Salmon eds. R.C. Simon & P.A. Larkin pp. 27–160 Columbia Press Vancouver BC

    Google Scholar 

  • Rittschof, D., R. Shepherd & L.G. Williams. 1984. Concentration and preliminary characterization of a chemical attractant of the oyster drill, Urosalpinx cinerea. J. Chem. Ecol. 10:63–75.

    CAS  Google Scholar 

  • Rittschof, D., D.W. Tsai, P.G. Massey, L. Blanco, G.L. Keuber, Jr. & R.J. Haas, Jr. 1992. Chemical mediation of behavior in hermit crabs: alarm and aggregation cues. J. Chem. Ecol. 18:959–984.

    Google Scholar 

  • Robbins, C.T., S. Mole, A.E. Haggerman & T.A. Hanley. 1987. Role of tannins in defending plants against ruminants: reduction in dry matter digestion?. Ecology 68:1606–1615.

    CAS  Google Scholar 

  • Rosenthal, G.A. & M.R. Berenbaum, eds. 1992. Herbivores Their Interaction with Secondary Plant Metabolites, Vol. II: Ecological and Evolutionary Processes, 2nd ed. Academic Press, San Diego.

    Google Scholar 

  • Russell, F.E. 1984. Marine toxins and venomous and poisonous marine plants and animals (invertebrates). Adv. Mar. Biol. 21:59–217.

    Google Scholar 

  • Russell, F.E. & P.R. Saunders. 1967. Animal Toxins. Pergamon Press, Oxford.

    Google Scholar 

  • Sakata, K. 1989. Feeding attractants and stimulant for marine gastropods. In: Bioorganic Marine Chemistry, Vol. 3, ed. P.J. Scheuer, pp. 115–129, Springer-Verlag, New York.

    Google Scholar 

  • Sakata, K., T. Itoh & K. Ina. 1984. A new bioassay method for phagostimulants for a young abalone, Halitosis discus Reeve. Agric. Biol. Chem. 48:425–429.

    Google Scholar 

  • Sakata, K., M. Tsuge & K. Ina. 1986. A simple bioassay for feeding stimulants for the young sea hare Aplysia juliana. Mar. Biol. 91:509–511.

    Google Scholar 

  • Sale, P.F. 1991. The Ecology of Fishes on Coral Reefs. Academic Press, San Diego, CA.

    Google Scholar 

  • Sammarco, P.W. & J.C. Coll. 1992. Chemical adaptations in the Octocorallia: evolutionary considerations. Mar. Ecol. Prog. Ser. 88:93–104.

    CAS  Google Scholar 

  • Sammarco, P.W., J.C. Coll, S. La Barre & B. Willis. 1983. Competitive strategies of soft corals (Coelenterata: Octocorallia): allelopathic effects on selected scleractinian corals. Coral reefs. 1:173–178.

    Google Scholar 

  • Sammarco, P.W., J.C. Coll & S. La Barre. 1985. Competitive strategies of soft corals (Coelenterata: Octocorallia). II. Variable defensive responses and susceptibility to scleractinian corals. J. Exp. Mar. Biol. Ecol. 91:199–215.

    Google Scholar 

  • Scheltema, R.S., I.P. Williams, M.A. Shaw & C. London. 1981. Gregarious settlement by larvae of Hydroides dianthus (Polychaeta: Serpulidae). Mar. Ecol. Prog. Ser. 5:69–74.

    Google Scholar 

  • Schmitt, B.C. & B.W. Ache. 1979. Olfaction: responses of a decapod crustacean are enhanced by flicking. Science 205:204–206.

    PubMed  CAS  Google Scholar 

  • Schmitt, T.M., M.E. Hay & N. Lindquist. 1995. Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123.

    Google Scholar 

  • Scholz, A.T. 1980. Hormonal Regulation of Smolt Transformation and Olfactory Imprinting in Coho Salmon. Ph.D. Dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • Scholz, N. & J. Atema. 1991. Effect of flow velocity on chemical signal dispersal and hermit crab orientation. Chem. Senses 16:577–578.

    Google Scholar 

  • Scholz, A.T., R.M. Horrall, J.C. Cooper & A.D. Hasler. 1976. Imprinting to chemical cues: the basis for home stream selection in salmon. Science 192:1247–1249.

    PubMed  CAS  Google Scholar 

  • Schupp, P.J. & V.J. Paul. 1994. Calcification and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes. Ecology 75:1172–1185.

    Google Scholar 

  • Shaw, B.A., P.J. Harrison & R.J. Andersen. 1994. Evaluation of the copepod Tigriopus californicus as a bioassay organism for the detection of chemical feeding deterrents by marine phytoplankton. Mar. Biol. 121:89–95.

    Google Scholar 

  • Shaw, B.A., P.J. Harrison & R.J. Andersen. 1995b. Feeding deterrence properties of apo fucoxanthinoids from marine diatoms. II. Physiology of production of apo fucoxanthinoids by the marine diatoms Phaeodactylum tricornutum and Thalassiosirea pseudonana, and their feeding deterrent effects on the copepod Tigriopus californicns. Mar. Biol. 124:473–481.

    CAS  Google Scholar 

  • Shaw, B.A., R.J. Andersen & P.J. Harrison. 1995a. Feeding deterrence properties of apo-fucoxanthinoids from marine diatoms. I. Chemical structures of apo-fucoxanthinoids produced by Phaeodactylum tricornutum. Mar. Biol. 124:467–472.

    Google Scholar 

  • Sievers, A.M. 1969. Comparative toxicity of Gonyaulax monilata and Gymnodinium breve to annelids, crustaceans, molluscs, and a fish. J. Protozool. 16:401–404.

    PubMed  CAS  Google Scholar 

  • Sih, A. 1986. Antipredator responses and the perception of danger by the mosquito larvae. Ecology 67:434–441.

    Google Scholar 

  • Sih, A., L.B. Kats & R.D. Moore. 1992. Effects of predatory sunfish on the density, drift, and refuge use of stream salamander larvae. Ecology 73:1418–1430.

    Google Scholar 

  • Slansky, F., Jr. 1992. M.R. Berenbaum, pp. 135–174, Academic Press, San Die

    Google Scholar 

  • Slattery, M., J.B. McClintock & J.N. Heine. 1995. Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J. Exp. Mar. Biol. Ecol. 190:61–77.

    CAS  Google Scholar 

  • Sleeper, H.L., V.J. Paul & W. Fenical. 1980. Alarm pheromones from the marine opisthobranch Navanax inermis. J. Chem. Ecol. 6:57–70.

    CAS  Google Scholar 

  • Sloan, N.A. 1980. The arm curling and terminal tube-foot response of the asteriod Crossaster papposus (l.). J. Nat. Hist. 14:469–482.

    Google Scholar 

  • Smith, R.J.F. 1992. Alarm signals in fishes. Rev. Fish Biol. Fishes 2:33–63.

    Google Scholar 

  • Snyder, N. & H. Snyder. 1970. Alarm response of Diadema antillarum. Science 168:276–278.

    PubMed  CAS  Google Scholar 

  • Sola, C. 1995. Chemoattraction of upstream migrating eels Anguilla anguilla to earthy and green odorants. Env. Biol. Fishes 43:179–185.

    Google Scholar 

  • Stachowicz, J.J. & M.E. Hay. 1996. Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia 105:377–387.

    Google Scholar 

  • Stachowicz, J.J. & N. Lindquist. 1997. Chemical defense among hydroids on pelagic Sargassum: predator deterrence and absorption of UV radiation by secondary metabolites. Mar. Ecol. Prog. Ser. 155:115–126.

    CAS  Google Scholar 

  • Standing, J.D., I.R. Hooper & J.D. Costlow. 1984. Inhibition and induction of barnacle settlement by natural products present in octocorals. J. Chem. Ecol. 6:823–834.

    Google Scholar 

  • Stanhope, M.J., M.M. Connelly & B. Hartwick. 1992. Evolution of a crustacean chemical communication channel: behavioral and ecological genetic evidence for a habitat-modified, race-specific pheromone. J. Chem. Ecol. 18:1871–1887.

    CAS  Google Scholar 

  • Stasko, A.B. 1971. Review of field studies on fish orientation. Ann. N.Y. Acad. Sci. 188:12–29.

    PubMed  CAS  Google Scholar 

  • Steele, C.W., A.D. Scarfe & D.W. Owens. 1991. Effects of group size on the responsiveness of zebrafish, Brachydanio verio (Hamilton Buchanan), to alanine, a chemical attractant. J. Fish. Biol. 38:553–564.

    CAS  Google Scholar 

  • Steinberg, P.D. 1984. Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marganita. Science 223:405–407.

    PubMed  CAS  Google Scholar 

  • Steinberg, P.D. 1988. Effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. J. Exp. Mar. Biol. Ecol. 120:221–237.

    Google Scholar 

  • Steinberg, P.D. 1994. Lack of short-term induction of phlorotannins in the Australian brown algae Ecklonia radiate and Sargassum vestitum. Mar. Ecol. Prog. Ser. 112:129–133.

    Google Scholar 

  • Steinberg, P.D. 1995. Interaction between the canopy dwelling echinoid Holopneustes purpurescens and its host kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 127:169–181.

    Google Scholar 

  • Steinberg, P.D. & I. van Altena. 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol. Monogr. 62:189–222.

    Google Scholar 

  • Steneck, R.S. & W.H. Adey. 1976. The role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builder. Bot. Mar. 19:197–215.

    Google Scholar 

  • Sullivan, B., D.J. Faulkner & L. Webb. 1983. Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth. Science 221:1175–1176.

    PubMed  CAS  Google Scholar 

  • Sutterlin, A.M. & R. Gray. 1973. Chemical basis for homing in Atlantic Salmon (Salmo salar). J. Fish Res. Board Can. 30:985–989.

    CAS  Google Scholar 

  • Sweatman, H.P.A. 1988. Field evidence that settling coral reef fish larvae detect resident fishes using dissolved chemical cues. J. Exp. Mar. Biol. Ecol. 124:163–174.

    Google Scholar 

  • Sykes, P.F. & M.E. Huntley. 1987. Acute physiological reactions of Calanus pacificus to selected dinoflagellates: direct observations. Mar. Biol. 94:19–24.

    Google Scholar 

  • Tachibana, K. 1988. Chemical defense in fishes. BioOrg. Mar. Chem. 2:117–138.

    Google Scholar 

  • Tamburri, M.N. & R.K. Zimmer-Faust. 1996. Suspension feeding: basic mechanisms controlling recognition and ingestion of larvae. Limnol. Oceanogr. 41:1188–1197.

    Google Scholar 

  • Tamiya, N. 1975. Sea snake venoms and toxins. In: The Biology of Sea Snakes, ed. W.A. Dunson, pp. 386–415, University Park Press, Baltimore.

    Google Scholar 

  • Targett, N.M. & J.E. Ward. 1991. Bioactive microalgal metabolites: mediation of subtle ecological interactions in phytophagous suspension-feeding marine invertebrates. In: Bioorganic Marine Chemistry, Vol. 4, ed. P.J. Scheuer, pp. 91–118, Springer-Verlag, Berlin.

    Google Scholar 

  • Targett, N.M., T.E. Targett, N.H. Vrolijk & J.C. Ogden. 1986. Effect of macrophyte secondary metabolites on feeding preferences of the herbivorous parrotfish Sparisoma radians. Mar. Biol. 92:141–148.

    CAS  Google Scholar 

  • Targett, N.M., A.A. Boettcher, T.E. Targett & N.H. Vrolijk. 1995. Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103:170–179.

    Google Scholar 

  • Targett, T.E. & N.M. Targett. 1990. Energetics of food selection by the herbivorous parrotfish Sparisoma radians: roles of assimilation efficiency, gut evacuation rate, and algal secondary metabolites. Mar. Ecol. Prog. Ser. 66:13–21.

    Google Scholar 

  • Thompson, J.E. 1985. Exudation of biologically active metabolites in the sponge Aplysina fistularis I. Biological evidence. Mar. Biol. 88:23–26.

    CAS  Google Scholar 

  • Thompson, J.E., R.P. Walker & D.J. Faulkner. 1985. Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA. Mar. Biol. 88:11–21.

    CAS  Google Scholar 

  • Thuesen, E.V., K. Kogure, K. Hashimoto & T. Nemoto. 1988. Poison arrowworms: a tetrodotoxin venom in the marine phylum Chaetognatha. J. Exp. Mar. Biol. Ecol. 116:249–256.

    Google Scholar 

  • Toonen, R.J. 1993. Environmental and Heritable Components of Settlement Behavior of Hydroides dianthus (Serpulidae: Polychaeta). Master’s Thesis. University of North Carolina at Wilmington.

    Google Scholar 

  • Toonen, R.J. & J.R. Pawlik. 1994. Foundations of gregariousness. Nature 370:511–512.

    Google Scholar 

  • Turner, E.J., R.K. Zimmer-Faust, M.A. Palmer, M. Luckenbach & N.D. Pentcheff. 1994. Settlement of oyster (Crassostrea virginica) larvae: effects of water flow and a water-soluble chemical cue. Limnol. Oceanogr. 39:1579–1593.

    CAS  Google Scholar 

  • Uye, S. & K. Takamatsu. 1990. Feeding interactions between planktonic copepods and red-tide dinoflagellates from Japanese coastal waters. Mar. Ecol. Prog. Ser. 59:97–107.

    Google Scholar 

  • Vadas, R.L., M.T. Burrows & R.N. Hughes. 1994. Foraging strategies of dogwhelks, Nucella lapillus (L.): interacting effects of age, diet and chemical cues to the threat of predation. Oecologia 100:439–450.

    Google Scholar 

  • Van Alstyne, K.L. 1986. Effects of phytoplankton taste and smell on feeding behavior of the copepod Centropages hamatus. Mar. Ecol. Prog. Ser. 34:187–190.

    Google Scholar 

  • Van Alstyne, K.L. 1995. Comparison of three methods for quantifying brown algal polyphenolic compounds. J. Chem. Ecol. 21:45–58.

    Google Scholar 

  • Van Alstyne, K.L. & V.J. Paul. 1992. Chemical and structural defenses in the sea fan Gorgonia ventalina: effects against generalist and specialist predators. Coral Reefs 11:155–159.

    Google Scholar 

  • Van Alstyne, K.L., C.R. Wylie, V.J. Paul & K. Meyer. 1992. Antipredator defenses in tropical Pacific soft corals (Coelenterata: Alycyonacea). I. Sclerites as defenses against generalist carnivorous fishes. Biol. Bull. 182:231–240.

    Google Scholar 

  • Van Alstyne, K.L., C.R. Wylie & V.J. Paul. 1994. Antipredator defenses in tropical Pacific soft corals (Colenterata: Alcyonacea) II. The relative importance of chemical and structural defenses in three species of Sinularia. J. Exp. Mar. Biol. Ecol. 178:17–34.

    Google Scholar 

  • Van-Praët, M. 1985. Nutrition of sea anemones. Adv. Mar. Biol. 22:65–99.

    Google Scholar 

  • Vannini, M. & S. Cannicci. 1995. Homing behavior and possible cognitive maps in crustacean decapods. J. Exp. Mar. Biol. Ecol. 193:67–91.

    Google Scholar 

  • Wahl, M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58:175–189.

    Google Scholar 

  • Walls, M. & M. Ketola. 1989. Effects of predator-induced spines on individual fitness in Daphnia pulex. Limnol. Oceanogr. 34:390–396.

    Google Scholar 

  • Wahl, M., P.R. Jensen & W. Fenical. 1994. Chemical control of bacterial epibiosis on ascidians. Mar. Ecol. Prog. Ser. 110:45–57.

    Google Scholar 

  • Walton, I. 1653. The Compleat Angler or the Contemplative Man’s Recreation. Marriot, London.

    Google Scholar 

  • Ward, J.E. & N.M. Targett. 1989. Influence of marine microbial metabolites on the feeding behavior of the blue mussel Mytilus edulis. Mar. Biol. 101:313–321.

    Google Scholar 

  • Waterman, P.G. & S. Mole. 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific, Oxford.

    Google Scholar 

  • Weissburg, M.J. & R.K. Zimmer-Faust. 1993. Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.

    Google Scholar 

  • Weissburg, M.J. & R.K. Zimmer-Faust. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol. 197:349–375.

    PubMed  CAS  Google Scholar 

  • Wells, M.J. 1978. Octopus: Physiology and Behaviour of an Advanced Invertebrate. Chapman and Hall, London.

    Google Scholar 

  • Wethey, D.S. 1986. Ranking of settlement cues by barnacle larvae: influence of surface contour. Bull. Mar. Sci. 39:393–400.

    Google Scholar 

  • White, A.W. 1981. Sensitivity of marine fishes to toxins from the red-tide dinoflagellate Gonyaulax excavate and implications for fish kills. Mar. Biol. 65:255–260.

    Google Scholar 

  • Wilson, D.P. 1953. The settlement of Ophelia bicornis Savigny larvae. J. Mar. Biol. Assoc. UK 32:209–233.

    Google Scholar 

  • Winter, F.C. & J.A. Estes. 1992. Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abaolone Haliotus rufescens Swainson. J. Exp. Mar. Biol. Ecol. 155:263–277.

    CAS  Google Scholar 

  • Wisby, W.J. & A.D. Hasler. 1954. The effect of olfactory occlusion on migrating silver salmon (O. kisutch). J. Fish. Res. Board Can. 11:472–478.

    Google Scholar 

  • Wylie, C.R. & V.J. Paul. 1989. Chemical defenses in three species of Sinularia (Coelenterata, Alcyonaceae): effects against generalist predators and the butterfly fish Chaetodon unimaculatus Bloch. J. Exp. Mar. Biol. Ecol. 129:141–160.

    Google Scholar 

  • Yang, C.S., J.F. Brady & J. Hong. 1992. Dietary effects on cytochromes P450, xenobiotic metabolism, and toxicity. FASEB J. 6:737–744.

    PubMed  CAS  Google Scholar 

  • Yates, J.L. & P. Peckol. 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757–1766.

    Google Scholar 

  • Young, C.M., P.A. Tyler, R.H. Emson & J.D. Gage. 1993. Perception and selection of macrophyte detrital falls by the bathyal echinoid Stylocidaris lineata. Deep-sea Res. 140:1475–1486.

    Google Scholar 

  • Zimmer-Faust, R.K. 1987. Towards a theory on optimal chemoreception. Biol. Bull 172:10–29.

    CAS  Google Scholar 

  • Zimmer-Faust, R.K. 1989. The relationship between chemoreception and foraging behavior in crustaceans. Limnol. Oceanogr. 34:1367–1374.

    Google Scholar 

  • Zimmer-Faust, R.K. 1991. Chemical signal-to-noise detection by spiny lobsters. Biol. Bull. 181:419–426.

    CAS  Google Scholar 

  • Zimmer-Faust, R.K. 1993. ATP: A potent prey attractant evoking carnivory. Limnol. Oceanogr. 38:1271–1275.

    CAS  Google Scholar 

  • Zimmer-Faust, R.K. & J.F. Case. 1983. A proposed dual role of odor in foraging by the California spiny lobster, Panulirus interruptus (Randall). Biol. Bull. 164:341–353.

    Google Scholar 

  • Zimmer-Faust, R.K. & M.N. Tamburri. 1994. Chemical identity and ecological implications of a waterborne larval settlement cue. Limnol. Oceanogr. 39:1075–1087.

    CAS  Google Scholar 

  • Zimmer-Faust, R.K., J.E. Tyre, W.C. Michel & J.F. Case. 1984. Chemical mediation of adaptive feeding in a marine decapod crustacean: the importance of suppression and synergism. Biol. Bull. 167:339–353.

    CAS  Google Scholar 

  • Zimmer-Faust, R.K., J.M. Stanfill & S.B. Collard III. 1988. A fast, multi-channel fluorometer for investigating aquatic chemoreception and odor trails. Limnol. Oceanogr. 33:1586–1595.

    CAS  Google Scholar 

  • Zimmer-Faust, R.K., C.M. Finelli, N.D. Pentcheff & D.S. Wethey. 1995. Odor plumes and animal navigation in turbulent water flow: a field study. Biol. Bull. 188:111–116.

    Google Scholar 

  • Zimmer-Faust, R.K., J.E. Commins, D.W. Schar, K.A. Browne, D.S. Wethey, N.D. Pentcheff & C.M. Finelli. 1996a. Mechanisms regulating predation: the role of free amino acids as prey attractants. Eos 76(3):OS70.

    Google Scholar 

  • Zimmer-Faust, R.K., P.B. O’Neill & D.W. Schar. 1996b. The relationship between predator activity state and sensitivity to prey odor. Biol. Bull. 190:82–87

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hay, M.E., Stachowicz, J.J., Cruz-Rivera, E., Bullard, S., Deal, M.S., Lindquist, N. (1998). Bioassays with Marine and Freshwater Macroorganisms. In: Haynes, K.F., Millar, J.G. (eds) Methods in Chemical Ecology Volume 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5411-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5411-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7471-8

  • Online ISBN: 978-1-4615-5411-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics