Skip to main content

Replication of Protosomes and Chromosomes

  • Chapter
Chromosome Biology
  • 317 Accesses

Abstract

  • • The replication of DNA is semiconservative, involving a single origin of replication in prokaryotes and multiple origins of replication in eukaryotes.

  • • Synthesis of new DNA occurs by copying an existing template through the addition of 5′-nucleoside monophosphate units to the 3′OH moiety of a primer sequence.

  • • Many proteins are involved in the replication process, and the enzymatic activities are the same in prokaryotes and eukaryotes.

  • • The high fidelity of DNA replication is the result of several different postreplicative editing activities that remove errors.

  • • Any single DNA segment is usually replicated only once per cell cycle, and the assembly of chromatin after DNA replication in eukaryotes is a critical period for competition between transcription-control factors and histones.

  • • Developmentally regulated deviations from the “once only per cell cycle” rule for DNA replication can lead to amplification of regions of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Section 18.1

  • Friebe, B. 1980. Comparison of sister chromatid exchange and chiasma formation in the genus Secale. Microscopica Acta 83: 103–111.

    Google Scholar 

  • Mcclintock, B. 1940. The association of mutants with homozy-gous deficiencies in Zea mays. Genetics 25: 542–571.

    Google Scholar 

  • Meselson, M, Stahl, F.W. 1958. The replication of DNA in Escherichia coll Proc. Natl. Acad. Sci. USA 44: 671–682.

    Article  PubMed  CAS  Google Scholar 

  • Peacock, W.J. 1979. Strandedness of chromosomes and segregation of replication products. Cell Biol. 2: 363–387.

    CAS  Google Scholar 

  • Taylor, J.H., Woods, P., Hughes, W.L. 1957. The organization and duplication of chromosomes as revealed by autoradio-graphic studies using tritium-labeled thymidine. Proc. Natl. Acad. Sci. USA 43: 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, S., Perry, P. 1974. Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 48: 341–353.

    Article  PubMed  CAS  Google Scholar 

Section 18.2

  • Borowmc, J.A., Dean, F.B., Bullock, P.A., Hurwitz, J. 1990. Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell 60: 181–184.

    Article  Google Scholar 

  • Brambill, D., Kornberg, A. 1988. A model for the initiation at origins of DNA replication. Cell 54: 915–918.

    Article  Google Scholar 

  • Crooke, E., Thresher, R., Hwang, D.S., Griffith, J., Kornberg, A. 1993. Replicatively active complexes of DnaA protein and the Escherichia coli chromosomal origin observed in the electron microscope. J. Molec. Biol. 233: 16–24.

    Article  PubMed  CAS  Google Scholar 

  • Debyser, Z., Tabor, S., Richardson, C.C. 1994. Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7. Cell 77: 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Diffley, J.F.X., Stillman, B. 1990. The initiation of chromosomal DNA replication in eukaryotes. Trends Genet. 6: 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Donachie, W.D. 1993. The cell cycle of Escherichia coli. Annu. Rev. Microbiol. 47: 199–230.

    Article  PubMed  CAS  Google Scholar 

  • Echols, H., Goodman, M.F. 1991. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60: 477–512.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H.P. 1995. FtsZ, a prokaryotic homolog of tubulin? Cell 80: 367–370.

    Article  PubMed  CAS  Google Scholar 

  • Fareed, G.C., Garon, C.F., Salzman, N.P. 1972. Origin and direction of replication of simian virus 40 deoxyribonucleic acid replication. J. Virol. 10: 484–491.

    PubMed  CAS  Google Scholar 

  • Kornberg, A. 1988. DNA replication. J. Biol. Chem. 263: 1–4.

    PubMed  CAS  Google Scholar 

  • Langridge, J. 1991. Molecular Genetics and Comparative Evolution. Research Studies Press Ltd., Taunton, Somerset, UK.

    Google Scholar 

  • Liu, B., Alberts, B.M. 1995. Head-on collision between a DNA replicating apparatus and RNA polymerase transcription complex. Science 267: 1131–1136.

    Article  PubMed  CAS  Google Scholar 

  • Matic, I., Rayssiguier, C., Radman, M. 1995. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80: 507–515.

    Article  PubMed  CAS  Google Scholar 

  • Mcmacken, R., Silver, L., Georgopoulos, C. 1987. DNA replication. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C. ed.-in-chief). American Society for Microbiology, Washington, DC. pp. 564–612.

    Google Scholar 

  • Messer, W., Weigel, C. 1997. DNA-A initiator-also a transcription factor. Mol. Microbiol. 24: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Rivier, D.H., Rine, J. 1992. An origin of DNA replication and a transcriptional silencer require a common element. Science 256: 659–663.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M., Migeon, B.R. 1990. Asynchronous replication of homologous loci on human active and inactive X chromosomes. Proc Natl. Acad. Sci. USA 87: 3685–3689.

    Article  PubMed  CAS  Google Scholar 

  • Zahn, K., Blattner, F.R. 1987. Direct evidence for DNA bending at the lambda replication origin. Science 236: 416–422.

    Article  PubMed  CAS  Google Scholar 

  • Zyskind, J.W., Cleary, J.M., Brusilow, W.S.A., Harding, N.E., Smith, D.W. 1983. Chromosomal replication origin from the marine bacterium Vibrio harveyi functions in Escherichia coli ori C consensus sequence. Proc. Natl. Acad. Sci. USA 80: 1164–1168.

    Article  PubMed  CAS  Google Scholar 

Section 18.3

  • Cook, P. 1991. The nucleoskeleton and the topology of replication. Cell 66: 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth, S.M., Dingwall, C. 1988. Chromatin assembly in vitro and in vivo. Bioessay 9: 44–49.

    Article  CAS  Google Scholar 

  • Durrin, L.K., Mann, R.K., Kayne, P.S., Grunstein, M. 1991. Yeast histone N-terminal sequence is required for promoter activation in vivo. Cell 65: 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  • Fairman, M.P. 1990. DNA polymerase δ/PCNA: actions and interactions. J. Cell Sci. 95: 1–4.

    PubMed  CAS  Google Scholar 

  • Francis, D., Bennett, M.D. 1982. Replicon size and mean rate of DNA synthesis in rye (Secale cereale L.) cv Petkus Spring. Chromosoma 86: 115–122.

    Article  CAS  Google Scholar 

  • Heck, M.M.S., Spradling, A.C. 1990. Multiple replication origins are used during Drosophila chorion gene amplification. J. Cell Biol. 110: 903–914.

    Article  PubMed  CAS  Google Scholar 

  • Heintz, N.H., Dailey, L., Held, P., Heintz, N. 1992. Eukaryotic replication origins as promoters of bidirectional DNA synthesis. Trends Genet. 8: 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Huberman, J.A., Riggs, A.D. 1968. On the mechanism of DNA replication in mammalian chromosomes. J. Molec. Biol. 32: 327–341.

    Article  PubMed  CAS  Google Scholar 

  • Kim, U-J., Han, M., Kayne, P., Grunstein, M. 1988. Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. EMBO J. 7: 2211–2219.

    PubMed  CAS  Google Scholar 

  • Mills, A.D., Blow, J.J., White, J.G. Amos,W.B., Wilcock, D., Laskey, R.A. 1989. Replication occurs at discrete foci spaced throughout nuclei replicating in vitro. J. Cell Sci. 94: 471–477.

    PubMed  Google Scholar 

  • Osley, M.A. 1991. The regulation of histone synthesis. Annu. Rev. Biochem. 60: 827–861.

    Article  PubMed  CAS  Google Scholar 

  • Pont, G., Degroote, F., Picard, G. 1988. Illegitimate recombination in the histone multigene family generates circular DNAs in Drosophila embryos. Nucleic Acids Res. 16: 8817–8833.

    Article  PubMed  CAS  Google Scholar 

  • Svaren, J. Chalkley, R. 1990. The structure and assembly of active chromatin. Trends Genet. 6: 52–56.

    Article  PubMed  CAS  Google Scholar 

  • Travers, A.A., Ner, S.S., Churchill, M.E.A. 1994. DNA chaperones: a solution to a persistence problem. Cell 77: 167–169.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T S.-F. 1991. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 60: 512–552.

    Article  Google Scholar 

Section 18.4

  • Delidakis, C., Kafatos, F.C. 1989. Amplification enhancers and replication origins in the autosomal chorion gene cluster of Drosophila. EMBO J. 8: 891–901.

    PubMed  CAS  Google Scholar 

  • Kapler, G.M., Orias, E., Blackburn, E.H. 1994. Tetrahymena thermophila mutants in the developmentally programmed maturation and maintenance of the rDNA minichromosome. Genetics 137: 455–466.

    PubMed  CAS  Google Scholar 

  • Kubrakiewicz, J., Billinsky, S. 1995. Extrachromosomal amplification of rDNA in oocytes of Hemerobius spp. (Insecta, Neuroptera). Chromosoma 103: 606–612.

    Article  PubMed  CAS  Google Scholar 

  • Stolzenburg, F., Gerwig, R., Dinkl, E., Grummt, F. 1994. Structural homologies and functional similarities between mammalian origins of replication and amplification promoting sequences. Chromosoma 103: 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Wintersberger, E. 1994. DNA amplification: new insights into its mechanism. Chromosoma 103: 73–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Appels, R., Morris, R., Gill, B.S., May, C.E. (1998). Replication of Protosomes and Chromosomes. In: Chromosome Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5409-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5409-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7470-1

  • Online ISBN: 978-1-4615-5409-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics