Skip to main content

A Magnetic Resonance Imaging Study of the Brain and the Spinal Cord During Ischemia

  • Chapter
Neurochemistry
  • 17 Accesses

Abstract

Nuclear magnetic resonance (NMR) is a physical method that has been used mainly as an analytical method by chemists to determine the structure of molecules in solution. There are two main applications of NMR in biomedical research and clinical practice: magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) (1). MRI has been restricted mainly to 1 H owing to the superior sensitivity and abundance of this nucleus. The “mapping” of the protons takes advantage of the fact that relaxation times of the protons vary according to their environment. The spin-spin relaxation times (T2) of protons in the white matter are 80–90 ms and of protons in the gray matter they are 90–100 ms. This provides discrimination between the protons of different tissues and yields high resolution images (2). Magnetic resonance imaging is very well established as a clinically useful diagnostic tool which helps establishing diagnosis and prognosis after brain and spinal cord injuries (3,4,5). The different MRI methods have been developed to improve the possibilities for studying the central nervous system pathology e.g. T1 and T2 weighted images (2), diffusion weighted images (6), echo-planar imaging (7) and combined imaging and spectroscopy (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beloeil, J.C., Gillet, B., Fedeli, O., Berenger, G., Lombardi, V., Marzullo, F., and Scozzafava, A., 1993, Mol. Chem. Neuropathol., 19: 1–13.

    Article  PubMed  CAS  Google Scholar 

  2. Bachelard, H., and Badar-Goffer, R., 1993, J. Neurochem., 61: 2, 412–429.

    Article  PubMed  CAS  Google Scholar 

  3. Lauterbur, P.C., 1973, Nature, 242: 190–191.

    Article  CAS  Google Scholar 

  4. Mansfield, P., and Granneil, P.K., 1975, Phys. Rev. Q., 129, 3618–3634.

    Google Scholar 

  5. Fujii, H., Kazunori, Y., and Takashi, S., 1993, Spine, 18: 14, 2030–2034.

    Article  PubMed  CAS  Google Scholar 

  6. Nordwood, T.J., and Williams, C.R., 1993, Magnetic Resonance Imaging, 11: 367–373.

    Article  Google Scholar 

  7. Stehling, M.K., Turner, R., and Mansfield P., 1991, Science, 254: 43–50.

    Article  PubMed  CAS  Google Scholar 

  8. Kirino, T., Tamura, A., and Sano, K., 1985, Progress in Brain Research, Volume 63, Molecular mechanism of ischemic brain damage (Koruge, K., Hossmann, K.A., Siesjo, B.K., Welsh, F.A., eds.), Elsevier, Amsterdam, New York, Oxford, PP. 39–58.

    Google Scholar 

  9. Zivin, J.A., and DeGirolami, U., 1980, Stroke, 11: 200–204.

    Article  PubMed  CAS  Google Scholar 

  10. Hossman, K.A., 1982, J. Cereb. Blood Flow Metab., 2: 275–297.

    Article  Google Scholar 

  11. Fujii, H., Yone, K., and Sakou, T., 1993, Spine, 18: 14, 2030–2034.

    Article  PubMed  CAS  Google Scholar 

  12. Faaroooqui, A.A., Haun, S.E., and Horrocks, L.A., 1994, Basic Neurochemistry, (Siegel, G.J., Agranoff, B.W., Albers, R.W., Holinoff, P.B., eds.), Raven Press, New York, PP. 867–883.

    Google Scholar 

  13. Klatzo, I., 1967, Exp. Neurol, 26: 1–14.

    CAS  Google Scholar 

  14. Verheul, H.B., Berkelbach van der Sprenkel, J.W., Tulleken, C.A.F., Tamminga, K.S., and Nicolay, K., 1992, Brain Topography, 5: 2, 171–176.

    Article  PubMed  CAS  Google Scholar 

  15. Olsson, Y, Crowell, R.M., and Klatzo, I., 1971, Acta Neuropathol., 18: 89–102.

    Article  PubMed  CAS  Google Scholar 

  16. Kato, H., Kogure, K., Ohtomo, H., Izumiyama, M., Tobita, M., Matsui, S., Yamamoto, E., Kohno, H., Ikebe, I., and Watanabe, T., 1986, J. Cereb. Blood Flow Metab., 6: 212–221.

    Article  PubMed  CAS  Google Scholar 

  17. Ordidge, R.J., Helpern, J.A., Knight, R.A., Qing, Z., and Welch, K.M.A., 1991, Mag. Res. Imag., 9: 895–902.

    Article  CAS  Google Scholar 

  18. Moseley, M.E., Cohen, Y, Mintorovitch, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., Wendland, M.F., and Weinstein, P.R., 1990, Magn. Reson. Med., 14: 330–346.

    Article  PubMed  CAS  Google Scholar 

  19. Uto, M., Ebisu, T., Naruse, S., Horikawa, Y, Tanaka, C., Umeda, M., Higuchi, T., Yamaki, T., and Ueda, S., 1991, Abstract Soc. Mag. Res. Med.

    Google Scholar 

  20. Benveniste, H., Hedlund, L.W., and Johnson, G.A., 1992, Stroke, 23: 746–754.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dobrota, D., Tkáè, I., Mlynárik, V., Liptaj, T. (1997). A Magnetic Resonance Imaging Study of the Brain and the Spinal Cord During Ischemia. In: Teelken, A., Korf, J. (eds) Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5405-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5405-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7468-8

  • Online ISBN: 978-1-4615-5405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics