Skip to main content

Regulated Expression of the CNS-Specific Cell Adhesion Molecule Ependymin After Acquisition of an Active Avoidance Behaviour Provides a Possible Mechanism for Memory Consolidation

  • Chapter
Neurochemistry

Abstract

Many phenomena of short term adaptations of the CNS have been explained with changes in the conductance of ion channels, that are induced by cascades of second transmitter systems ultimately leading towards ion channel phosphorylation. On the other hand, it is the long-term consolidation of memory that appears to be vulnerable, in particular in the context of age-related disseases of which Alzheimer’s is but the most prominent example. A few years ago, cell adhesion molecules were considered just sticky agglutinants, but now it is well accepted that they are accurately regulated glycoproteins involved in li- gand-receptor relationships triggering intracellular second messenger cascades. They are known to guide axonal growth and the migration of neurectodermal cells during epige- netic differentiation. Also during CNS regeneration cell adhesion molecules are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schmidt, J.T., and Shashoua, V.E., 1988, Brain Res. 446: 269–284.

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt, J.T., Schmidt, R., Lin, W., Jian, X., and Stuermer, C.A.O., 1991, J. Neuiobiol. 22: 40–54.

    Article  CAS  Google Scholar 

  3. Königstorfer, A., Sterrer, S., Eckerskorn, C., Lottspeich, F., Schmidt, R., and Hoffmann, W., 1989, J. Neurochem. 52: 310–312.

    Article  PubMed  Google Scholar 

  4. Hoffmann, W., and Schwarz, H., 1996, Interntl Rev. Cytol. 165: 121–158.

    Article  CAS  Google Scholar 

  5. Schmidt, R., and Shashoua, V.E., 1981, J. Neurochem. 36: 1368–1377.

    Article  PubMed  CAS  Google Scholar 

  6. Shashoua, V.E., Daniel, P.F., Moore, M.E., and Jungalwala, F.B., 1986, Biochem. Biophys. Res. Commun. 138: 902–909.

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt, R., and Makiola, E., 1992, Life Sci. Advances 10: 161–171.

    Google Scholar 

  8. Ganss, B., and Hoffmann, W., 1993, Eur. J. Biochem. 217: 275–280.

    Article  PubMed  CAS  Google Scholar 

  9. Shashoua, V.E:, 1988, Neurochem. Res. 13: 649–655.

    Article  PubMed  CAS  Google Scholar 

  10. Rother, S., Schmidt, R., Brysch, W., and Schlingensiepen, K.-H., 1995, J. Neurochem. 65: 1456–1464.

    Article  PubMed  CAS  Google Scholar 

  11. Schmidt, R., 1989, Progr. Zool., Vol. 37 (Rahmann, H., ed.), Gustav Fischer Verlag, Stuttgart, New York,, PP. 327–339.

    Google Scholar 

  12. Benowitz, L.I., and Shashoua, V.E., 1977, Brain Res. 136: 227–242.

    Article  PubMed  CAS  Google Scholar 

  13. Piront, M.-L., and Schmidt, R., 1988, Brain Res. 442: 53–62.

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt, R., 1987, J. Neurochem. 48: 1870–1878.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt, R., 1995, Behav. Brain Res. 66: 65–72.

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt, R., Brysch, W., Rother, S., and Schlingensiepen, K.-H., 1995, J. Neurochem. 65: 1465–1471.

    Article  PubMed  CAS  Google Scholar 

  17. Meek, J., 1981, J. Comp. Neurol. 199: 149–173.

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt, R., Rother, S., Schlingensiepen, K.-H., and Brysch, W., 1992, Progr. Brain Res. 91: 7–12.

    Article  CAS  Google Scholar 

  19. Morris, M.E., Ropert, N., and Shashoua, V.E., 1986, Annals New York Acad. Sci. 481: 375–377.

    Article  Google Scholar 

  20. Körtje, K.-H., and Körtje, D., 1992, J. Microscopy 166: 34–358.

    Article  Google Scholar 

  21. Bailey, C.H., and Kandel, E.R., 1993, Ann. Rev. Physiol. 55: 397–426.

    Article  CAS  Google Scholar 

  22. Murphy, K.J., O’Connell, A.W., and Regan, C.M., 1997, this volume.

    Google Scholar 

  23. Welzl, H., Becker, C., Artola, A., and Schachner, M., 1997, this volume.

    Google Scholar 

  24. Mileusnic, R., and Rose, S.P.R., 1997, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, R. (1997). Regulated Expression of the CNS-Specific Cell Adhesion Molecule Ependymin After Acquisition of an Active Avoidance Behaviour Provides a Possible Mechanism for Memory Consolidation. In: Teelken, A., Korf, J. (eds) Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5405-9_143

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5405-9_143

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7468-8

  • Online ISBN: 978-1-4615-5405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics