Skip to main content

Targeted Immunolesion of Cholinergic Neurons by 192 IgG-Saporin

A Novel Tool to Study Neurochemical Events of Alzheimer’s Disease

  • Chapter
Neurochemistry

Abstract

The basal forebrain cholinergic system is known to play an important role in cortical arrousal and normal cognitive function. Cortical cholinergic dysfunction has been implicated in cognitive deficits that occur in Alzheimer’s disease, and the cholinergic projection from the nucleus basalis of Meynert (Nbm) to areas of the cerebral cortex is the pathway that is most early and severely affected in brains from Alzheimer patients. Investigations on the functions of the central cholinergic system require adequate animal models to produce specific cholinergic deficits in vivo. This would allow for a detailed evaluation of the neurochemical, neuropathological, and behavioural sequela as well as functional implications of plastic repair mechanisms following cholinergic hypofunction, and provide information that cannot or only partially be obtained in humans. At present there is no adequate animal model available which could mimic all the biochemical, behavioural, and histopathological abnormalities as observed in patients with Alzheimer’s disease. However, partial success can be achieved with so called “isomorphic models” (1) representing partial parallelism between model and some human conditions. The value of such models is to delineate mechanisms underlying the pathological processes as well as to test for new potential therapeutic strategies. In the last few years an increasing number of studies have applied neurotoxins including excitotoxins or cholinotoxins by stereotaxic injection into the Nbm to produce reductions in cortical cholinergic activity. One of the most serious limitations of these lesion paradigms is the fact that basal forebrain cholinergic neurons are always intermingled with populations of non-cholinergic cells and that the cytotoxins used are far from being selective to cholinergic cells. Recently, a novel approach for neuronal lesioning has been introduced by Wiley et al.(2) by using immunotar-geting of unspecific cytotoxins. Cholinergic neurons of the basal forebrain possess nerve growth factor (NGF) receptors whereas other neurons in this region including the cholinergic cells in the nearby striatum do not express detectable levels of NGF receptors (3,4). It was demonstrated that a well-characterized monoclonal antibody to the low-affinity NGF receptor, 192IgG, accumulates bilaterally exclusively in cholinergic neurons of the basal forebrain following intracerebroventricular administration (see e.g. ref. 5). Employing these properties of 192IgG, a cholinergic immunotoxin was developed by chemical linking of 192IgG to the ribosome inactivating protein saporin (192IgG-saporin; see refs. 2,6; for details of preparation, see ref. 7). Here we demonstrate the usefulness of 192IgG-saporin as a powerful tool for producing an animal model with selective and specific basal forebrain cholinergic lesions in rats which can be applied to study the impact of reduced cortical cholinergic input on neurochemical events in cholinoceptive target regions as well as to test therapetic strategies to compensate for cortical cholinergic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher, A., and Hanin, I., 1986, Ann. Rev. Pharmacol. Toxicol., 26: 161–181.

    Article  CAS  Google Scholar 

  2. Wiley, R.G., Oeltmann, T.N., and Lappi, D.A., 1991, Brain Res., 562: 149–153.

    Article  PubMed  CAS  Google Scholar 

  3. Gage, F.H., Batchelor, P., Chen, K.S., Chin, D., Deputy, S., Rosenberg, M.B., Higgins, G.A., Koh, S., Fischer, W., and Björklund, A., 1989, Neuron, 2: 1177–1184.

    Article  PubMed  CAS  Google Scholar 

  4. Yan, Q., and Johnson, jr., E.M., 1989, J. Comp. Neurol., 290: 585–598.

    Article  PubMed  CAS  Google Scholar 

  5. Thomas, L.B., Book, A.A., and Schweitzer, J.B., 1991, J. Neurosci. Meth., 37: 37–45.

    Article  CAS  Google Scholar 

  6. Wiley, R.G., 1992, Trends Neurosci., 15: 285–290.

    Article  PubMed  CAS  Google Scholar 

  7. Wiley, R.G., and Lappi, D.A., 1993, Neurosci. Protoc., 93-020-02-01-12.

    Google Scholar 

  8. Roßner, S., Perez-Polo, J.R., Wiley, R.G., Schliebs, R., and Bigl, V., 1994, J. Neurosci. Res., 38: 282–293.

    Article  PubMed  Google Scholar 

  9. Roßner, S., Härtig, W., Schliebs, R., Bröckner, G., Brauer, K., Perez-Polo, J.R., Wiley, R.G., and Bigl, V., 1995, J. Neurosci. Res., 41: 335–346.

    Article  PubMed  Google Scholar 

  10. Roßner, S., Schliebs, R., Perez-Polo, J.R., Wiley, R.G., and Bigl, V., 1995, J. Neurosci. Res., 40: 31–43.

    Article  PubMed  Google Scholar 

  11. Roßner, S., Schliebs, R., Härtig, W., and Bigl, V., 1995, Brain Res. Bull., 38: 371–381.

    Article  PubMed  Google Scholar 

  12. Roßner, S., Schliebs, R., and Bigl, V., 1995, Brain Res., 696: 165–176.

    Article  PubMed  Google Scholar 

  13. Roßner, S., Yu, J., Pizzo, D., Werrbach-Perez, K., Schliebs, R., Bigl, V., and Perez-Polo, J.R., 1996, J. Neurosci. Res., in press.

    Google Scholar 

  14. Berger-Sweeney, J., Heckers, S., Mesulam, M.-M., Wiley, R.G., Lappi, D.A., and Sharma, M., 1994, J. Neumscl, 14: 4507–4519.

    CAS  Google Scholar 

  15. Book, A.A., Wiley, R.G., and Schweitzer, J.B., 1992, Brain Res., 590: 350–355.

    Article  PubMed  CAS  Google Scholar 

  16. Heckers, S., Ohtake, T., Wiley, R.G., Lappi, D.A., Geula, C., and Mesulam, M.M., 1994, J. Neumsci., 14: 1271–1289.

    CAS  Google Scholar 

  17. Leanza, G., Nilsson, O.G., Wiley, R.G., and Björklund, A., 1995, Eur. J. Neumsci. 7: 329–343.

    Article  CAS  Google Scholar 

  18. Lee, M.G., Chrobak, J.J., Sik, A., Wiley, R.G., and Buzsáki, G., 1994, Neuroscience, 62: 1033–1047.

    Article  PubMed  CAS  Google Scholar 

  19. Wenk, G.L., Stoehr, J.D., Quintana, G., Mobley, S., and Wiley, R.G., 1994, J. Neumsci., 14: 5986–5995.

    CAS  Google Scholar 

  20. Book, A.A., Wiley, R.G., and Schweitzer, J.B., 1994, J. Neuropath. Exp. Neurol., 53: 95–102.

    Article  PubMed  CAS  Google Scholar 

  21. Bickel, U., and Kewitz H., 1990, Dementia, 1: 146–150.

    Google Scholar 

  22. Woolf, N.J., Gould, E., and Butcher, L.L., 1989, Neuroscience, 30: 143–152.

    Article  PubMed  CAS  Google Scholar 

  23. Torres, E.M., Perry, T.A., Blokland, A., Wilkinson, L.S., Wiley, R.G., Lappi, D.A., and Dunnett, S.B., 1994, Neuroscience, 63: 95–122.

    Article  PubMed  CAS  Google Scholar 

  24. Waite, J.J., Chen, A.D., Wardlow, M.L., Wiley, R.G., Lappi, D.A., and Thal, L.J., 1995, Neuroscience, 65: 463–476.

    Article  PubMed  CAS  Google Scholar 

  25. Nilsson, O.G., Leanza, G., Rosenblad, C., Lappi, D.A., Wiley, R.G., and Björklund A, 1992, Neuroreport, 3: 1005–1008.

    Article  PubMed  CAS  Google Scholar 

  26. Gomeza, J., Aragon, C., and Giménez, C., 1992, Neurochem. Res., 17: 345–350.

    Article  PubMed  CAS  Google Scholar 

  27. Wellman, C.L., and Sengelaub, D.R., 1995, Brain Res., 669: 48–58.

    Article  PubMed  CAS  Google Scholar 

  28. Seeburg, P.H., 1993, Trends Pharmacol. Sci., 14: 297–303.

    Article  PubMed  CAS  Google Scholar 

  29. Nordberg, A., 1992, Cerebrovasc. Brain Met. Rev., 4: 303–328

    CAS  Google Scholar 

  30. Advokat, C., and Pelligrini, A.I., 1992,. Neumscl Behav. Rev., 16: 13–24.

    Article  CAS  Google Scholar 

  31. Burney, R.N., 1994, Neumbiol Aging, 15: 271–273.

    Article  Google Scholar 

  32. Carlson, M.D., Penney jr., J.B., and Young A.B., 1993, Neumbiol. Aging, 14: 343–352.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schliebs, R., Roßner, S., Heider, M., Bigl, V. (1997). Targeted Immunolesion of Cholinergic Neurons by 192 IgG-Saporin. In: Teelken, A., Korf, J. (eds) Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5405-9_136

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5405-9_136

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7468-8

  • Online ISBN: 978-1-4615-5405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics