Advertisement

An Integrated Treatment System for Polychlorinated Biphenyls Remediation

  • Mary Jim Beck
  • Alice C. Layton
  • Curtis A. Lajoie
  • James P. Easter
  • Gary S. Sayler
  • John Barton
  • Mark Reeves
Part of the Environmental Science Research book series (ESRH, volume 54)

Abstract

Bioremediation is an environmental biotechnology with promise for promoting a sustainable environment. Bioremediation makes use of natural processes and applies the metabolic properties of microorganisms for transforming contaminants to forms that are harmless in the environment. The added capability of biotechnology for tailoring microbial processes to specific problems expands the potential of bioremediation for encouraging a sustainable environment. The process for the biotransformation of polychlorinated biphenyls (PCB) described in this paper is a good example of the enhancement of bioremediation through the tools of biotechnology.

Keywords

Unit Operation Diatomaceous Earth Lauryl Ether Surfactant Solubilization Surfactant Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul, A.S. and T.L. Gibson. 1991. Laboratory studies for surfactant-enhanced washing of polychlorinated biphenyl from sandy material. Environ. Sci. Technol. 25: 665–671.CrossRefGoogle Scholar
  2. Abdul, A.S., T.L. Gibson, C.C. Ang, J.C. Smith, and R.E. Sobezynski. 1992. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated site. Ground Water 30: 219–231.CrossRefGoogle Scholar
  3. Abramowicz, D.A. 1990. Aerobic and anaerobic biodegradation of PCBs: A review. Critical Reviews in Biotechnology 10: 241–251.CrossRefGoogle Scholar
  4. Asturias, J.A. and K.N. Timmis. 1993. Three different 2,3-dihydroxybiphenyl-l,2-dioxyygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J. Bacteriol. 175: 4631–4640.Google Scholar
  5. Barriault, D. and M. Sylvestre. 1993. Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms. Can. J. Microbiol. 39: 594–602.CrossRefGoogle Scholar
  6. Bedard, D.L., R.E. Wagner, M.J. Brennan, M.L. Haberl and J.F. Brown, Jr. 1987. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094–1102.Google Scholar
  7. Bedard, D.L. and J.F. Quensen III. 1995. “Microbial reductive dechlorination of polychlorinated biphenyls.” In: Microbial transformation and degradation of toxic organic chemicals. L. Young and C. Cerniglia, eds. pp. 127–216.Google Scholar
  8. Brunner, W., F.H. Sutherland and D.D. Focht. 1985. Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J. Environ. Qual. 14: 324–328.CrossRefGoogle Scholar
  9. Bumpus, J.A., M. Tiem, D. Wright and S.D. Aust. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 228: 1431–1436.CrossRefGoogle Scholar
  10. Chen, M., C.S. Hong, B. Bush, and G.-Y. Rhee. 1988. Anaerobic biodegradation of polychlorinated biphenyls by bacteria from Hudson River sediments. Ecotoxicology and Environmental Safety. 16: 95–105.CrossRefGoogle Scholar
  11. Dietrich, D, W.J. Hickey, and R. Lamar. 1995. Degradation of 4,4’-dichlorobiphenyl,3,3′,4,4′-tetrachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysoporium. Appl. Environ. Microbiol. 61: 3904–3909.Google Scholar
  12. Evans, B.S., C.A. Dudley, and K. T. Klasson. 1996. Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl. Biochem. and Biotech. 57/58: 885–894.CrossRefGoogle Scholar
  13. Farrell, R.L., T.K. Kirk, and M. Tien. 1987. Novel enzymes which catalyze the degradation and modification of lignin. U.S. Patent 4,687,741.Google Scholar
  14. Fiebig, R., D. Schulze, P. Erlemann, M. Slawinski, and H. Dellweg. 1993. Microbial degradation of polychlorinated biphenyls in contaminated soil. Biotechnol. Lett. 15: 93–98.CrossRefGoogle Scholar
  15. Focht, D. D. and W. Brunner. 1985. Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl. Environ. Microbiol. 50: 1058–1063.Google Scholar
  16. Hickey, W.J., D. B. Searles, and D.D. Focht. 1993. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl. Environ. Microbiol. 59: 1194–1200.Google Scholar
  17. Kohler, H.-P.E., D. Kohler-Staub, and D.D. Focht. 1988. Cometabolism of polychorinated biphenyls: Enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl. Environ. Microbiol. 54: 1940–1945.Google Scholar
  18. Lajoie, CA., S.-Y. Chen, K.C. Oh, and P. F. Strom. 1992. Development and use of field application vectors to express non-adaptive foreign genes in competitive environments. Appl. Environ. Microbiol. 58: 655–663.Google Scholar
  19. Lajoie, C.A., G.J. Zylstra, M.F. DeFlaun and P.F. Strom. 1993. Development of field application vectors for biore-mediation of soils contaminated with polychlorinated biphenyls. Appl. Environ. Microbiol. 59: 1735–1741.Google Scholar
  20. Lajoie, C.A., A.C. Layton, and G.S. Sayler. 1994. Cometabolic oxidation of polychlorinated biphenyls in soil with a surfactant-based field application vector. Appl. Environ. Microbiol. 60: 2826–2833.Google Scholar
  21. Lajoie, CA., A.C. Layton, J.P. Easter, F.-M. Menn and G.S. Sayler. 1996. Degradation of surfactants and polychlorinated biphenyls by recombinant field application vectors. Submitted for publicatiGoogle Scholar
  22. Layton, A.C., C.A. Lajoie, J.P. Easter, R. Jernigan, M.J. Beck, and G.S. Sayler. 1994a. Molecular diagnostics for polychlorinated biphenyl degradation in contaminated soils. The New York Academy of Science 721: 407–422.CrossRefGoogle Scholar
  23. Layton, A.C. C.A. Lajoie, J.P. Easter, R. Jernigan, J. Sanseverino, and G.S. Sayler. 1994b. Molecular diagnostics and chemical analysis for assessing biodegradation of polychlorinated biphenyls in contaminated soils. J. Indust. Microbiol. 13: 392–401.CrossRefGoogle Scholar
  24. Layton, A.C., C.A. Lajoie, J.P. Easter, and G.S. Sayler. 1996. Integration of surfactant solubilization of PCBs and PCB biodegradation using surfactant/PCB degrading FAVs. Manuscript in preparation.Google Scholar
  25. McDermott, J.B., R. Unterman, M. J. Brennan, R.E. Brooks, D. P. Mobley, C.C. Schwartz, and D. K. Dietrich. 1989. Two strategies for PCB soil remediation: biodegradation and surfactant extraction. Environ. Progress. 8: 46–51.CrossRefGoogle Scholar
  26. Mondello, F.J., 1989. Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171: 1725–1732.Google Scholar
  27. Quensen, J.F. III, S.A. Boyd, and J. M. Tiedje. 1990. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56: 2360–2369.Google Scholar
  28. Rhee, G.-Y, B. Bush, M.P. Brown, M. Kane, and L. Shane. 1989. Anaerobic biodegradation of polychlorinated biphenyls in Hudson river sediments and dredged sediments in clay encapsulation. Water Research 23: 957–964.CrossRefGoogle Scholar
  29. Sayler, G.S., U. Matrubutham, C Steward, A. Layton, C Lajoie, J. Easter, and B. Applegate. 1996. Towards field release of engineered strains for bioremediation. Proceedings from the 7th Symposium on Environmental Release of Biotechnology Products: Risk assessment methods and research progress. In review.Google Scholar
  30. Sun, S. W.P. Inskeep, and S.A. Boyd. 1995. Sorption of nonionic organic compounds in soil-water systems containing micelle-forming surfactant. Environ. Sci. Tech. 29: 903.CrossRefGoogle Scholar
  31. Yadav, J.S., J.F. Quensen III, J.M. Tiedje, and C.A. Reddy. 1995. Degradation of polychlorinated biphenyl mixtures (Aroclor 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl. Environ. Microbiol. 61: 2560–2565.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mary Jim Beck
    • 1
  • Alice C. Layton
    • 2
  • Curtis A. Lajoie
    • 2
  • James P. Easter
    • 2
  • Gary S. Sayler
    • 2
  • John Barton
    • 3
  • Mark Reeves
    • 3
  1. 1.Tennessee Valley Authority, CEB 1FMuscle ShoalsUSA
  2. 2.Center for Environmental Biotechnology, Department of Microbiology, and the Graduate Program in EcologyUniversity of TennesseeKnoxvilleUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations