Skip to main content

Mullitization Behavior of Alpha Alumina/Silica Microcomposite Powders

  • Chapter
Ceramic Microstructures

Abstract

The mechanism of mullite formation was investigated using submicrometer composite particles which consisted of alpha alumina cores and amorphous silica coatings. Mullitization behavior was monitored using X-ray diffraction analysis, differential thermal analysis, and scanning electron microscopy. The transformation occurred with an incubation period which was followed by stages of rapid mullite growth (up to ∼70% conversion) and slower mullite growth. The first growth stage occurred primarily by nueleation and growth within the siliceous matrix. Available evidence indicates that the growth rate was controlled by dissolution of alumina in the siliceous phase. The second stage of mullitization occurred primarily by interdiffusion of alumina and silica through the mullite grains formed during the first stage. The transformation rate in the second stage was increased significantly by using mullite seed particles which produced smaller grain sizes during the first stage (and, thereby, decreased the interdiffusion distances needed to complete the reaction). This seeding approach allowed fabrication of bulk mullite samples with nearly 100% relative density and fine grain size (∼0.4 μm) after heat treatment at only 1400°C (2 h).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.L. de Keyser, Reactions at the point of contact between SiO2 and Al2O3, pp. 243–257 in Science of Ceramics, Vol. 2, G.H. Stewart, ed., Academic Press, London, U.K. (1965).

    Google Scholar 

  2. R.F. Davis and J.A. Pask, Diffusion and reaction studies in the system Al2O3-SiO2, J.Am. Ceram. Soc., 55[10]: 525–531 (1972).

    Article  CAS  Google Scholar 

  3. J. Ossaka, Tetragonal mullite-like phase from co-precipitated gels, Nature (London), 19[4792]: 1000–1001 (1961).

    Article  Google Scholar 

  4. S. Kanzaki, H. Tabata, T. Kumazawa, and S. Ohta, “Sintering and mechanical properties of stoichiometric mullite,” J. Am. Ceram. Soc., 68[1]: C–6–C–7 (1985).

    Google Scholar 

  5. B.E. Yoldas and D.P. Partlow, Formation of mullite and other alumina-based ceramics via hydrolytic polycondensation of alkoxides and resultant ultra-and micro-structural effects, J. Mater. Sci., 23[5]: 1895–1900 (1988).

    Article  CAS  Google Scholar 

  6. J.C. Huling and G.L. Messing, Chemistry-crystallization relations in molecular mullite gels, J. Non-Crystalline Solids, 147/148: 213–221(1992).

    Article  Google Scholar 

  7. D.X. Li and WJ. Thomson, Mullite formation kinetics of a single-phase gel, J. Am. Ceram. Soc., 73[4]: 964–969 (1990).

    Article  CAS  Google Scholar 

  8. D.W. Hoffman, R. Roy, and S. Komarneni, Diphasic xerogels, a new class of materials: phases in the system Al2O3-SiO2, J. Am. Ceram. Soc., 67[7]: 468–71 (1984).

    CAS  Google Scholar 

  9. R. Roy, S. Komarneni, and D.M. Roy, Multi-phasic ceramic composites made by sol-gel technique, pp. 347–359 in Better Ceramics Through Chemistry, Mat. Res. Soc. Symp. Proa, Vol. 32, C.J. Brinker, D.E. Clark, and D.R. Ulrich, eds., Elsevier Publishing Co., New York (1984).

    Google Scholar 

  10. K. Okada and N. Otsuka, Characterization of the spinel phase from SiO2-Al2O3 xerogels and the formation process of mullite, J. Am. Ceram. Soc., 69[9]: 652–656 (1986).

    Article  CAS  Google Scholar 

  11. M.J. Hyatt and N.P. Bansal, Phase transformations in xerogels of mullite composition, J. Mater. Sci., 25:2815–2821(1990).

    Article  CAS  Google Scholar 

  12. D.X. Li and W.J. Thomson, Kinetic mechanisms for the mullite formation from sol-gel precursors, J. Mater. Res., 5[9]: 1963–1969 (1990).

    Article  CAS  Google Scholar 

  13. B.E. Yoldas, Effect of ultrastructure on crystallization of mullite, J. Mater. Sci., 27: 6667–6672 (1992).

    Article  CAS  Google Scholar 

  14. J.C. Huling and G.L. Messing, Hybrid gels for homoepitactic nucleation of mullite, J. Am. Ceram. Soc., 72[9]: 1725–1729 (1989).

    Article  CAS  Google Scholar 

  15. J.C. Huling and G.L. Messing, Hybrid gels designed for mullite nucleation and crystallization control; pp. 515–26 in Better Ceramics Through Chemistry IV, Mat. Res. Soc. Symp. Proc., Vol. 180, B.J.J. Zelinski, C.J. Brinker, D.E. Clark and D.R. Ulrich, eds., Materials Research Society, Pittsburgh, PA (1990).

    Google Scholar 

  16. J.C. Huling and G.L. Messing, Epitactic nucleation of spinel in aluminum silicate gels and effect on mullite crystallization, J. Am. Ceram. Soc., 74[10]: 2374–2381 (1991).

    Article  CAS  Google Scholar 

  17. C. Gerardin, S. Sundaresan, J. Benzinger, and A. Navrotsky, Structural investigation and energetics of mullite formation from sol-gel precursors, Chem. Mater., 6: 160–170 (1994).

    Article  CAS  Google Scholar 

  18. D.X. Li and W.J. Thomson, Tetragonal to orthorhombic transformation during mullite formation, J. Mater. Res., 6[4]: 819–824 (1991).

    Article  CAS  Google Scholar 

  19. W.-C. Wei and J.W. Halloran, Phase transformation of diphasic aluminosilicate gels, J. Am. Ceram. Soc., 71[3]: 166–172 (1988).

    Article  CAS  Google Scholar 

  20. W.-C. Wei and J.W. Halloran, Transformation kinetics of diphasic aluminum silicate gels, J. Am. Ceram. Soc., 71[7]: 581–587 (1988).

    Article  CAS  Google Scholar 

  21. C.-S. Hsi, H.-Y. Lu, and F.-S. Yen, Thermal behavior of alumina-silica xerogels during calcination, J. Am. Ceram. Soc., 72[11]: 2208–2210 (1989).

    Article  CAS  Google Scholar 

  22. S. Rajendran, H.J. Rossell, and J.V. Sanders, Crystallization of a coprecipitated mullite precursor during heat treatment, J. Mater. Sci., 25: 4462–4471 (1990).

    Article  CAS  Google Scholar 

  23. G. Klaussen, G.S. Fischman, and J.L. Laughner, Microstructural evolution of sol-gel mullite, Ceram. Eng. Sci. Proc., 11[7-8]: 1087–93 (1990).

    Article  CAS  Google Scholar 

  24. S. Sundaresan and LA. Aksay, Mullitization of diphasic aluminosilicate gels, J. Am. Ceram. Soc., 74[10]: 2388–2392 (1991).

    Article  CAS  Google Scholar 

  25. M.D. Sacks, N. Bozkurt, and G.W. Scheiffele, Fabrication of mullite and muUite-matrix composites by transient viscous sintering of composite powders, J. Am. Ceram. Soc., 74[10]: 2428–2437 (1991).

    Article  CAS  Google Scholar 

  26. M.D. Sacks, Y.-J. Lin, G.W. Scheiffele, K. Wang, and N. Bozkurt, Effect of seeding on phase development, densification behavior, and microstructure evolution in mullite fabricated from microcomposite powders, J. Am. Ceram. Soc., 78[11]: 2897–2906 (1995).

    Article  CAS  Google Scholar 

  27. K. Wang and M.D. Sacks, Mullite formation by endothermic reaction of alpha alumina/silica microcomposite particles, J. Am. Ceram. Soc., 79[1]: 12–16 (1996).

    Article  CAS  Google Scholar 

  28. M.D. Sacks, K. Wang, G.W. Scheiffele, and N. Bozkurt, Activation energy for mullitization of alpha alumina/silica microcomposite particles, J. Am. Ceram. Soc., 79[2]: 571–573 (1996).

    Article  CAS  Google Scholar 

  29. M.D. Sacks, K. Wang, G.W. Scheiffele, and N. Bozkurt, Effect of composition on mullitization behavior of alpha alumina/silica microcomposite powders, to be published in J. Am. Ceram. Soc.

    Google Scholar 

  30. S. Aramaki and R. Roy, Revised phase diagram for the system Al2O3-SiO2, J. Am. Ceram. Soc., 45[5]: 229–242(1962).

    Article  CAS  Google Scholar 

  31. IA. Aksay and JA. Pask, Stable and metastable equilibria in the system SiO2-Al2O3, J. Am. Ceram. Soc., 58[11-12]: 507–512 (1975).

    Article  CAS  Google Scholar 

  32. F.J. Klug, S. Prochazka, and R.H. Doremus, Al2O3-SiO2 system in the mullite region, J. Am. Ceram. Soc., 70[10]: 750–759 (1987).

    Article  CAS  Google Scholar 

  33. R.E. Carter, Kinetic model for solid-state reactions, J. Chem. Phys., 34[6]: 2010–2015 (1961).

    Article  CAS  Google Scholar 

  34. P.A. Lessing, R.S. Gordon, and K.S. Mazdiyasni, Creep of polycrystalline mullite, J. Am. Ceram. Soc., 58[3-4]: 149 (1975).

    Article  CAS  Google Scholar 

  35. P.C. Dokko, J.A. Pask, and K.S. Mazdiyasni, High temperature mechanical properties of mullite under compression, J. Am. Ceram. Soc., 60[3-4]: 150–155 (1977).

    Article  CAS  Google Scholar 

  36. IA. Aksay, Diffusion and Phase Relationship Studies in the Alumina-Silica System, Ph.D. Thesis, University of California, Berkeley, CA (1973).

    Google Scholar 

  37. A.P. Hynes and R.H. Doremus, High-temperature compressive creep of polycrystalline mullite, J. Am. Ceram. Soc., 74[10]: 2469–2475 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sacks, M.D., Wang, K., Scheiffele, G.W., Bozkurt, N. (1998). Mullitization Behavior of Alpha Alumina/Silica Microcomposite Powders. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics