Skip to main content

Grain-Boundary Films in A Silicon Nitride Ceramic at High Temperatures

  • Chapter
Ceramic Microstructures

Abstract

The high-temperature microstructure of an MgO-sintered Si3N4 (NC-132) was investigated. Thin samples were heated to temperatures between 1350°C and 1650°C for various times and then quenched to “freeze-in” the high-temperature microstructure. The grain-boundary film thickness was found to depend on temperature and residence time prior to quenching. Rapid heating to temperatures just above the eutectic temperature, followed shortly by quenching, resulted in large increases in intergranular film thickness due to solution of Si3N4 in the glass; the large variation in film widths observed at different grain boundaries indicated a condition of nonequilibrium. For higher temperatures and/or longer times at temperatures, the increased amorphous phase at the grain-boundaries could be redistributed to the multiple-grain junctions by either viscous flow or diffusion of Si3N4 due to a chemical potential gradient in the amorphous phase. Redistribution of glass resulted in film thicknesses slightly greater than those found at room temperature, due to small compositional changes of the glass. Equilibrium film thicknesses were obtained when liquid phase redistribution was not kinetically limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Clarke, High-temperature microstructure of a hot-pressed silicon nitride, J. Am. Ceram. Soc., 72:1604(1989).

    Article  CAS  Google Scholar 

  2. M.K. Cinibulk, H.-J. Kleebe, G.A. Schneider, and M. Rühle, Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures, J. Am. Ceram. Soc., 76:2801 (1993).

    Article  CAS  Google Scholar 

  3. D.R. Clarke, On the equilibrium thickness of intergranular glass phases, J. Am. Ceram. Soc., 70:15 (1987).

    Article  CAS  Google Scholar 

  4. M.K. Cinibulk, H.-J. Kleebe, and M. Rühle, Quantitative comparison of TEM techniques for determining amorphous intergranular film thickness, J. Am. Ceram. Soc., 76:426 (1993).

    Article  CAS  Google Scholar 

  5. H.-J. Kleebe, M.K. Cinibulk, R.M. Cannon, and M. Rühle, Statistical analysis of the intergranular film thickness in silicon nitride ceramics, J. Am. Ceram. Soc., 76:1969 (1993).

    Article  CAS  Google Scholar 

  6. F.F. Lange, Eutectic studies in the system Si3N4-Si2N2O-Mg2SiO4, J. Am. Ceram. Soc. 62:585 (1979).

    Article  Google Scholar 

  7. G.R. Terwilliger and F.F. Lange, Pressureless sintering of Si3N4, J. Mater. Sci., 10:1169 (1975).

    Article  CAS  Google Scholar 

  8. W.C. Tripp and H.C. Graham, Oxidation of Si3N4 in the range 1300° to 1500°C, J. Am. Ceram. Soc., 59:399(1976).

    Article  CAS  Google Scholar 

  9. D. Cubicciotti and K.H. Lau, Kinetics of oxidation of hot-pressed silicon nitride containing magnesia, J. Am. Ceram. Soc., 61:512 (1978).

    Article  CAS  Google Scholar 

  10. R.L. Tsai and R. Raj, The role of grain-boundary sliding in the fracture of hot pressed Si3N4 at high temperatures, J. Am. Ceram. Soc., 63:513 (1980).

    Article  CAS  Google Scholar 

  11. S. McKernan, Environmental scanning electron microscopy of ceramics at high temperature, in: Microbeam Analysis, J. Friel, ed., VCH Publishers, New York (1994).

    Google Scholar 

  12. D.R. Clarke, T.M. Shaw, A.P. Philipse, and R.G. Horn, On a possible electrical double layer contribution to the equilibrium film thickness of intergranular glass films in polycrystalline ceramics, J. Am. Ceram. Soc., 76:1201(1993).

    Article  Google Scholar 

  13. R. Raj, Creep in polycrystalline aggregates by matter transport through a liquid phase, J. Geophys. Res., 87:4731 (1982).

    Article  CAS  Google Scholar 

  14. G.M. Pharr and M.F. Ashby, On creep enhanced by a liquid phase, Acta Metall. 31:129 (1983).

    Article  CAS  Google Scholar 

  15. J.E. Marion, A.G. Evans, M.D. Drory, and D.R. Clarke, High temperature failure initiation in liquid phase sintered materials, Acta Metall., 31:1445 (1983).

    Article  CAS  Google Scholar 

  16. J.R. Dryden, D. Kucerovsky, D.S. Wilkinson, and D.F. Watt, Creep deformation due to a viscous grain boundary phase, Acta Metall., 37:2007 (1989).

    Article  CAS  Google Scholar 

  17. F.F. Lange, Liquid-phase sintering: are liquids squeezed out from between compressed particles?, J. Am.Ceram. Soc., 65:C–23 (1982).

    Article  Google Scholar 

  18. O.-H. Kwon and G.L. Messing, A theoretical analysis of solution-precipitation controlled densification during liquid-phase sintering, Acta Metall. Mater., 39:2059 (1991).

    Article  CAS  Google Scholar 

  19. H.-J. Kleebe, M.J. Hoffmann, and M. Rühle, Influence of the secondary phase chemistry on grain boundary film thickness in silicon nitride, Z. Metallkd., 83:610 (1992).

    CAS  Google Scholar 

  20. I. Tanaka, H.-J. Kleebe, M.K. Cinibulk, J. Bruley, D.R. Clarke, and M. Rühle, Calcium concentration dependence of the intergranular film thickness in silicon nitride, J. Am. Ceram. Soc., 77:911 (1994).

    Article  CAS  Google Scholar 

  21. Y.-M. Chiang, L.A. Silverman, R.H. French, and R.M. Cannon, Thin glass film between ultrafine conductor particles in thick-film resistors, J. Am. Ceram. Soc., 17:1143 (1994).

    Article  Google Scholar 

  22. C.-M. Wang, X. Pang, M.J. Hoffmann, R.M. Cannon, and M. Rühle, Grain boundary films in rare-earth-glass-based silicon nitride, J. Am. Ceram. Soc., 79:788 (1996).

    Article  CAS  Google Scholar 

  23. P. Greil and J. Weiss, Evaluation of the microstructure of β-SiAI0N solid solution materials containing different amounts of amorphous grain boundary phase, J. Mater. Sci., 17:1571 (1982).

    Article  CAS  Google Scholar 

  24. I. Tanaka, H.-J. Kleebe, M.K. Cinibulk, J. Bruley, and M. Rühle, Amorphous grain-boundary films in SiO2-containing Si3N4 ceramics, unpublished work.

    Google Scholar 

  25. R.A.L. Drew, S. Hampshire, and K.H. Jack, Nitrogen glasses, Proc. Br. Ceram. Soc., 31:119 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cinibulk, M.K., Kleebe, HJ. (1998). Grain-Boundary Films in A Silicon Nitride Ceramic at High Temperatures. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics