Skip to main content

Dysfunctional Variants and the Structural Biology of the Serpins

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 425))

Abstract

The development of our knowledge of the serpins illustrates the advantages of considering a protein superfamily as a whole. The serpins have all retained a common tertiary structure despite the individual evolution of diverse functions; for example, the homology of the plasma protease inhibitor α1-antitrypsin is closer to that of corticosteroid binding globulin than is the homology of the two heparin-binding plasma inhibitors — antithrombin and heparin cofactor II — one to another. This retention of a well conserved structure necessarily requires the retention of strong homologies in primary and secondary structures in all the members of the family, across functions as well as species. For this reason, from the beginning, the study of the serpins has been a collective process with our understanding of the function of each member being greatly strengthened by parallel studies of other serpins. This has been particularly true of the lessons learnt from the human dysfunctional variants; one by one they have provided clues as to the normal function in individual members but when considered together with structural studies, in terms of the family as a whole, they have opened our understanding to a degree that far surpasses the contribution of more conventional approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laurell, C.-B. and Eriksson, S. (1963). The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand. J. Clin. Lab. Invest. 15: 132–140.

    CAS  Google Scholar 

  2. Petersen, E.E., Dudek-Wojciechowska, G., Sottrup-Jensen, L. and Magnusson, S. (1979). The primary structure of antithrombin III (heparin cofactor). Partial homology between α1-antitrypsin and antithrombin III. In eds Collen: The physiological inhibitors of coagulation and fibrinolysis, Elsevier-North Holland Biomedical Press Amsterdam, 43–54.

    Google Scholar 

  3. Carrell, R., Owen, M., Brennan, S. and Vaughan, L. (1979). Carboxy terminal fragment of human α1-antitrypsin from hydroxylamine cleavage: homology with antithrombin III. Biochem. Biophys. Res. Commun. 91: 1031–1037.

    Google Scholar 

  4. Boswell, D.R., Owen, M.C., Brennan, S.O., Carrell, R.W. and McLachlan, A.D. (1980). Ligand-binding properties of proalbumin Christchurch. Biochem. J. 191: 281–283.

    Google Scholar 

  5. Johnson, D. and Travis, J. (1978). Structural evidence for methionine at the reactive site of human a-1-proteinase inhibitor. J. Biol. Chem. 253: 7142–7144.

    PubMed  CAS  Google Scholar 

  6. Martodam, R.R. and Liener, I.E. (1981). The interaction of α1-antitrypsin with trypsin, chymotrypsin and human leukocyte elastase as revealed by end group analysis. Biochim. Biophys. Acta 667: 328–340.

    CAS  Google Scholar 

  7. Lewis, J.H., Iammarino, R.M., Spero, J.A. and Hasiba, U. (1978). Antithrombin Pittsburgh: An α1-antitrypsin variant causing hemorrhagic disease. Blood 51: 129–137.

    PubMed  CAS  Google Scholar 

  8. Owen, M.C., Brennan, S.O., Lewis, J.H. and Carrell, R.W. (1983). Mutation of antitrypsin to antithrombin. α1-antitrypsin Pittsburgh (358 Met to Arg), a fatal bleeding disorder. N. Eng. J. Med. 309: 694–698.

    Article  CAS  Google Scholar 

  9. Bathurst, I.C., Brennan, S.O., Carrell, R.W., Cousens, L.C., Brake, A.J. and Barr, P.J. (1986). Yeast KEX2 protease meets unique requirements for human proalbumin converting enzyme. Science 235: 348–350.

    Article  Google Scholar 

  10. Elliott, P.R., Lomas, D.A., Carrell, R.W. and Abrahams, J.P. (1996). Inhibitory conformation of the reactive loop of α1-antitrypsin. Nature Struct. Biol. 3: 676–681.

    CAS  Google Scholar 

  11. Carrell, R.W., Christey, P.B. and Boswell, D.R. (1987). Serpins: antithrombin and other inhibitors of coagulation and fibrinolysis; evidence from amino acid sequences. In eds Verstraets, Vermylen, Lijnen and Arnout: Thrombosis and Haemostasis Leuven University Press, 1–15.

    Google Scholar 

  12. Huber, R. and Carrell, R.W. (1989). Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 28: 8951–8966.

    Article  PubMed  CAS  Google Scholar 

  13. Koide, T., Odani, S., Takahashi, K., Onon, T. and Sakuragawa, N. (1984). Antithrombin III Toyama: replacement of Arginine 47 by Cysteine in hereditary abnormal antithrombin III that lacks heparin binding ability. Proc. Nat. Acad. Sci. USA 81: 289–293.

    Article  PubMed  CAS  Google Scholar 

  14. Peterson, C.B., Noyes, C.M., Pecon, J.M., Church, F.C. and Blackburn, M.N. (1987). Identification of a lysyl residue in antithrombin which is essential for heparin binding. J. Biol. Chem. 262: 8061–8065.

    PubMed  CAS  Google Scholar 

  15. Borg, J.Y., Owen, M.C., Soria, C., Soria, J., Caen, J. and Carrell, R.W. (1988). Proposed heparin binding site in antithrombin based on Arginine 47. A new variant Rouen-II, 47 Arg to His. J. Clin. Invest. 81: 1292–1296.

    Article  PubMed  CAS  Google Scholar 

  16. Stein, P.E. and Carrell, R.W. (1995). What do dysfunctional serpins tell us about molecular mobility and disease? Nature Struct. Biol. 2: 96–113.

    CAS  Google Scholar 

  17. Carrell, R.W. and Stein, P.E. (1996). The biostructural pathology of the serpins: Critical function of sheet opening mechanism. Biological Chemistry Hoppe-Seyler 377: 1–17.

    Article  PubMed  CAS  Google Scholar 

  18. Loebermann, H., Tokuoka, R., Deisenhofer, J. and Huber, R. (1984). Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. Mol. Biol. 177: 531–556.

    Article  PubMed  CAS  Google Scholar 

  19. Carrell, R.W. and Owen, M.C. (1985). Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317: 730–732.

    Article  PubMed  CAS  Google Scholar 

  20. Gettins, P. (1989). Absence of large scale proteolytic change upon limited proteolysis of ovalbumin, the prototypic serpin. J. Biol. Chem. 264: 3781–3785.

    PubMed  CAS  Google Scholar 

  21. Stein, P.E., Tewkesbury, D.A. and Carrell, R.W. (1989). Ovalbumin and angiotensinogen lack serpin S-R conformational change. Biochem. J. 262: 103–107.

    CAS  Google Scholar 

  22. Pemberton, P.A., Stein, P.E., Pepys, M.B., Potter, J.M. and Carrell, R.W. (1988). Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336: 257–258.

    Article  PubMed  CAS  Google Scholar 

  23. Edgar, P.F. (1989). The structure and function of corticosteroid binding globulin.

    Google Scholar 

  24. Wilczynska, M., Fa, M., Ohlsson, P.-I. and Ny, T. (1995). The inhibition mechanism of serpins. Evidence that the mobile reactive centre loop is cleaved in the native protease-inhibitor complex. J. Biol. Chem. 270: 29652–29655.

    Article  PubMed  CAS  Google Scholar 

  25. Shore, J.D., Day, D.E., Francis-Chmura, A.M., Verhamme, I., Kvassman, J., Lawrence, D.A. and Ginsburg, D. (1995). A fluorescent probe study of plasminogen activator inhibitor-I: Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J. Biol. Chem. 270: 5395–5398.

    Article  PubMed  CAS  Google Scholar 

  26. Engh, R., Huber, R., Bode, W. and Schulze, A. (1995). Divining the serpin inhibition mechanism: a suicide substrate ‘springe’? Trends in Biotech. 13: 503–510.

    Article  CAS  Google Scholar 

  27. Devraj-Kizuk, R., Chui, O.H.K., Prochownik, E.V., Carter, C.J., Ofosu, F.A. and Blajchman, M.A. (1988). Antithrombin III-Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity. Blood 72: 1518–1523.

    PubMed  CAS  Google Scholar 

  28. Mohlo-Sabatier, P., Aiach, M., Gaillard, I., Fiessinger, J.J., Fischer, A.M., Chadeuf, G. and Clauser, E. (1989). Molecular characterisation of antithrombin III variants using polymerase chain reaction: identification of the ATIII Charleville as an Ala384Pro mutation. Journal of Clinical Investigation 84: 1236–1241.

    Article  Google Scholar 

  29. Perry, D.J., Harper, P.L., Fairham, S., Daly, M. and Carrell, R.W. (1989). Antithrombin Cambridge, 384 Ala to Pro: a new variant identified using the polymerase chain reaction. FEBS Letts. 254: 174–176.

    Article  CAS  Google Scholar 

  30. Perry, D.J., Daly, M., Harper, P.L., Tait, R.C., Price, J., Walker, I.D. and Carrell, R.W. (1991). Antithrombin Cambridge II, 384 Ala to Ser. Further evidence of the role of the reactive centre loop in the inhibitory function of the serpins. FEBS Letts. 285: 248–250.

    Article  CAS  Google Scholar 

  31. Skriver, K., Wikoff, W.R., Patston, P.A., Tausk, F., Schapira, M.,Kaplan, A.P. and Bock, S.C. (1991). Substrate properties of Cl inhibitor Ma (alanine 434→glutamic acid). J. Biol. Chem. 266: 9216–9221.

    PubMed  CAS  Google Scholar 

  32. Davis III, A.E., Aulak, K., Parad, R.B., Stecklein, H.P., Eldering, E., Hack, C.E., Kramer, J., Strunk, R.C., Bissler, J. and Rosen, F.S. (1992). CI inhibitor hinge region mutations produce dysfunction by different mechanisms. Nature Genetics 1: 354–358.

    Article  PubMed  CAS  Google Scholar 

  33. Carrell, R.W., Evans, D.L. and Stein, P.E. (1991). Mobile reactive centre of serpins and the control of thrombosis. Nature 353: 576–578.

    Article  PubMed  CAS  Google Scholar 

  34. Carrell, R.W. and Perry, D. (1996). The unhinged antithrombins. Brit. J. Haemat. 93: 253–257.

    Article  CAS  Google Scholar 

  35. Schulze, A.J., Baumann, U., Knof, S., Jaeger, E., Huber, R. and Laurell, C.-B. (1990). Structural transition of α1-antitrypsin by a peptide sequentially similar to β-strand s4A. Eur. J. Biochem. 194: 51–56.

    Article  PubMed  CAS  Google Scholar 

  36. Stein, P.E., Leslie, A.G.W., Finch, J.T., Turnell, W.G., McLaughlin, P.J. and Carrell, R.W. (1990). Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347: 99–102.

    Article  PubMed  CAS  Google Scholar 

  37. Hekman, C.M. and Loskutoff, D.J. (1985). Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J. Biol. Chem. 260: 11581–11587.

    PubMed  CAS  Google Scholar 

  38. Sancho, E., Declerck, P.J., Price, C., Kelly, S.M. and Booth, N.A. (1995). Conformational studies on plasminogen activator inhibitor (PAI-1) in active, latent, substrate and cleaved forms. Biochemistry 34: 1064–1069.

    Article  PubMed  CAS  Google Scholar 

  39. Katagiri, K., Okada, K., Hattori, H. and Yano, M. (1988). Bovine endothelial cell plasminogen activator inhibitor. Purification and heat activation. Eur. J. Biochem. 176: 81–87.

    Article  PubMed  CAS  Google Scholar 

  40. Carrell, R.W., Evans, D.L. and Stein, P.E. (1993). Mobile reactive centre of serpins and the control of thrombosis (correction). Nature 364: 737.

    CAS  Google Scholar 

  41. Bruce, D., Perry, D.J., Borg, J.-Y., Carrell, R.W. and Wardell, M.R. (1994). Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen VI (187 Asn→Asp). J. Clin. Invest. 94: 2265–2274.

    Article  PubMed  CAS  Google Scholar 

  42. Lomas, D.A., Elliott, P.R., Chang, W.-S.W., Wardell, M.R. and Carrell, R.W. (1995). Preparation and characterisation of latent α1-antitrypsin. J. Biol. Chem. 270: 5282–5288.

    Article  PubMed  CAS  Google Scholar 

  43. Busby, T.F., Atha, D.H. and Ingham, K.C. (1981). Thermal denaturation of antithrombin III. Stabilization by heparin and lyotropic anions. J. Biol. Chem. 256: 12140–12147.

    PubMed  CAS  Google Scholar 

  44. Mast, A.E., Enghild, J.J. and Salvesen, G. (1992). Conformation of the reactive site loop of α1-proteinase inhibitor probed by limited proteolysis. Biochemistry 31: 2720–2728.

    Article  PubMed  CAS  Google Scholar 

  45. Lomas, D.A., Evans, D.L., Finch, J.T. and Carrell, R.W. (1992). The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357: 605–607.

    Article  PubMed  CAS  Google Scholar 

  46. Huntington, J.A., Patson, P.A. and Gettins, P.G.W. (1995). S-ovalbumin, an ovalbumin conformer with properties analogous to those of loop-inserted serpins. Protein Science 4: 613–621.

    Article  PubMed  CAS  Google Scholar 

  47. Mottonen, J., Strand, A., Symersky, J., Sweet, R.M., Danley, D.E., Geoghegan, K.F., Gerard, R.D. and Goldsmith, E.J. (1992). Structural basis of latency in plasminogen activator inhibitor-1. Nature 355: 270–273.

    Article  PubMed  CAS  Google Scholar 

  48. Carrell, R.W., Stein, P.E., Fermi, G. and Wardell, M.R. (1994). Biological implications of a 3Å structure of dimeric antithrombin. Structure 2: 257–270.

    Article  PubMed  CAS  Google Scholar 

  49. Schreuder, H.A., de Boer, B., Dijkema, R., Mulders, J., Theunissen, H.J.M., Grootenhuis, P.D.J. and Hol, W.G.J. (1994). The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct. Biol. 1: 48–54.

    CAS  Google Scholar 

  50. Wei, A., Rubin,H.,Cooperman, B.S. and Christianson, D.W. (1994). Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory loop. Nature Struct. Biol. 1: 251–258.

    Article  PubMed  CAS  Google Scholar 

  51. Van Boeckel, C.A.A., Grootenhuis, P.D.J. and Visser, A. (1994). A mechanism for heparin-induced potentiation of antithrombin III. Nature Struct. Biol. 1: 423–425.

    Google Scholar 

  52. Janciauskiene, S., Eriksson, S. and Wright, H.T. (1996). A specific structural interaction of Alzheimer’s peptide A1–42 with a1-antichymotrypsin stimulates amyloid fibril formation. Nature Struct. Biol., in press.

    Google Scholar 

  53. Lomas, D.A., Finch, J.T., Seyama, K., Nukiwa, T. and Carrell, R.W. (1993). α1-antitrypsin S iiYama(Ser53→Phe); further evidence for intracellular loop-sheet polymerisation. J. Biol. Chem. 268: 15333–15335.

    PubMed  CAS  Google Scholar 

  54. Kwon, K.-S., Kim, J., Shin, H.S. and Yu, M.-H. (1994). Single amino acid substitutions of α1-antitrypsin that confer enhancement in thermal stability. J. Biol. Chem. 269: 9627–9631.

    PubMed  CAS  Google Scholar 

  55. Sidhar, S.K., Lomas, D.A., Carrell, R.W. and Foreman, R.C. (1995). Mutations which impede loop/sheet polymerisation enhance the secretion of human α1-antitrypsin deficiency variants. J. Biol. Chem. 270: 8393–8396.

    Article  PubMed  CAS  Google Scholar 

  56. Lee, K.N., Park, S.D. and Yu, M.-H. (1996). Probing the native strain in α1-antitrypsin. Nature Struct. Biol. 3: 497–500.

    CAS  Google Scholar 

  57. Holmes, M.D., Brantly, M.L., Fells, G.A. and Crystal, R.G. (1990).α1- acantitrypsin Wbethesda: molecular basis of an unusual α1-antitrypsin deficiency variant. Biochem. Biophys. Res. Commun. 170: 1013–1020.

    Article  PubMed  CAS  Google Scholar 

  58. Berkenpas, M.B., Lawrence, D.A. and Ginsburg, D. (1995). Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 14: 2969–2977.

    PubMed  CAS  Google Scholar 

  59. Perry, D.J., Marshall, C., Borg, J.-Y., Tait, R.C., Daly, M.E., Walker, I.D. and Carrell, R.W. (1995). Two novel antithrombin variants, Asn187Asp and Asn187Lys, indicate a functional role for asparagine 187. Blood Coagulation and Fibrinolysis 6: 51–54.

    Article  PubMed  CAS  Google Scholar 

  60. Eldering, E., Verpy, E., Roem, D., Meo, T. and Tosi, M. (1995). COOH-terminal substitutions in the serpin Cl inhibitor that cause loop overinsertion and subsequent multimerization. J. Biol. Chem. 270: 2579–2587.

    Article  PubMed  CAS  Google Scholar 

  61. Brodbeck, R.M. and Brown, J.L. (1992). Secretion of a-l -proteinase inhibitor requires an almost full length molecule. J. Biol. Chem. 267: 294–297.

    PubMed  CAS  Google Scholar 

  62. Sifers, R.N., Hardick, C.P. and Woo, S.L.C. (1989). Disruption of the 290–342 salt bridge is not responsible for the secretory defect of the PiZ α1-antitrypsin variant. J. Biol. Chem. 264: 2997–3001.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carrell, R., Lomas, D., Stein, P., Whisstock, J. (1997). Dysfunctional Variants and the Structural Biology of the Serpins. In: Church, F.C., Cunningham, D.D., Ginsburg, D., Hoffman, M., Stone, S.R., Tollefsen, D.M. (eds) Chemistry and Biology of Serpins. Advances in Experimental Medicine and Biology, vol 425. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5391-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5391-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7461-9

  • Online ISBN: 978-1-4615-5391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics