Skip to main content

Anaerobic Transformations of Carbon Tetrachloride: Combined Bacterial and Abiotic Processes

  • Chapter
Emerging Technologies in Hazardous Waste Management 7

Abstract

Environmental transformation of chlorinated organic compounds can involve strictly abiotic reactions, direct microbial transformations, and microbially mediated reactions. Shewanella putrefaciens 200, is able to dechlorinate carbon tetrachloride (CT) under anaerobic conditions and served as a model bacterium for examining the role of inorganic components (iron minerals), natural organic matter, and solution chemistry (buffer concentration) on rates of CT transformation. Pseudo-first-order rate constants for CT degradation increased 10-fold in the presence of 150 mM Fe(III)-oxide and were linearly proportional to Fe(III)-oxide concentrations. The Fe(III)-oxide did not transform CT in the absence of S. putrefaciens. CT dechlorination in microbial batch reactors was also increased by the presence of soil containing a high concentration of natural organic matter. The same soil catalyzed CT dechlorination in the absence of S. putrefaciens when dithiothreitol was added as a reductant. Rates of CT transformation by S. putrefaciens in the absence of soil or Fe(III)-oxides were also shown to increase with increasing buffer concentration. This work suggests that the relative contribution of (i) direct microbial transformations and (ii) microbially mediated abiotic transformations by inorganic or organic sediment catalysts will vary with sediment composition and solution chemistry. Increased biotreatment rates may be possible by utilization of sediment amendments that increase abiotic transformation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alder, A. C., M. M. Haggblom, S. R. Oppenheimer, and L. Y. Young. 1993. Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ. Sci. Technol. 27:530–538.

    Article  CAS  Google Scholar 

  2. Arnold, R. G., T. J. DiChristina, and M. R. Hoffmann. 1988. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol. Bioeng. 32:1081–1096.

    Article  CAS  Google Scholar 

  3. Barbash, J. E., and M. Reinhard. 1989. Abiotic dehalogenation of 1,2-dichloroethane and 1,2-dibromoethane in aqueous solution containing hydrogen sulfide. Environ. Sci. Technol. 23:1349–1357.

    Article  CAS  Google Scholar 

  4. Barrio-Lage, G., F. Z. Parsons, R. S. Nassar, and P. A. Lorenzo. 1986. Sequential dehalogenation of chlorinated ethenes. Environ. Sci. Technol. 20:96–99.

    Article  CAS  Google Scholar 

  5. Bouwer, E. J., and P. L. McCarty. 1983. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45:1286–1294.

    CAS  Google Scholar 

  6. Criddle, C. S., J. T. DeWitt, D. Grbic-Galic, and P. L. McCarty. 1990. Transformation of carbon tetrachloride by Pseudomonas sp Strain KC under denitrification conditions. Appl. Environ. Microbiol. 56:3240–3246.

    CAS  Google Scholar 

  7. Curtis, G. P., and M. Reinhard. 1994. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid. Environ. Sci. Technol. 28:2393–2401.

    Article  CAS  Google Scholar 

  8. DeWeerd, K. A., and J. M. Suflita. 1990. Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of “Desulfomonile tiedjei”. Appl. Environ. Microbiol. 56:2999–3005.

    CAS  Google Scholar 

  9. DiChristina, T. J. 1992. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J. Bacteriol. 174:1891–1896.

    CAS  Google Scholar 

  10. Dunnivant, F. M., and R. P. Schwarzenbach. 1992. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ. Sci. Technol. 26:2133–2141.

    Article  CAS  Google Scholar 

  11. Gorby, Y. A., D. J. Workman, D. W. Kennedy, and A. E. Plymale. 1994. Transformation of carbon tetrachloride by an iron reducing bacterium in the presence of solid phase iron (abstract). In: “The 94th General Meeting of the American Society for Microbiology”, ASM; Las Vegas, Nevada

    Google Scholar 

  12. Gossett, J. M. 1987. Measurement of henry’s law constants for c, and e2 chlorinated hydrocarbons. Environ. Sci. Technol. 21:202–208.

    Article  CAS  Google Scholar 

  13. Heijman, C. G., C. Holliger, M. A. Glans, R. P. Schwarzenbach, and J. Zeyer. 1993. Abiotic reduction of 4chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59:4350–4353.

    CAS  Google Scholar 

  14. Jafvert, C. T., and N. L. Wolfe. 1987. Degradation of selected halogenated ethanes in anoxic sediment-water systems. Environ. Toxicol. Chem. 6:827–837.

    Article  CAS  Google Scholar 

  15. Kausen, J., S. P. Tröber, S. B. Haderlein, and R. P. Schwarzenbach. 1995. Reduction of substituted nitro-benzenes by Fe(Il) in aqueous mineral suspensions. Environ. Sci. Technol. 29:2396–2404.

    Article  Google Scholar 

  16. Kriegman-King, M. R., and M. Reinhard. 1994. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ. Sci. Technol. 28:692–700.

    Article  CAS  Google Scholar 

  17. Kriegman-King, M. R., and M. Reinhard. 1992. Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environ. Sci. Technol. 26:2198–2206.

    Article  CAS  Google Scholar 

  18. Lovley, D. R., and E. J. P. Phillips. 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river. Appl. Environ. Microbiol. 52:751–757.

    CAS  Google Scholar 

  19. Macalady, D. L., P. G. Tratnyek, and T. J. Grundl. 1986. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: a critical review. J. Contam. Hydro!. 1:1–28.

    Article  CAS  Google Scholar 

  20. Nealson, K. H., and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311–343.

    Article  CAS  Google Scholar 

  21. Obuekwe, C. O., and D. W. S. Westlake. 1982. Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil. Can. J. Microbiol. 28:989–992.

    CAS  Google Scholar 

  22. Obuekwe, C. O., and D. W. S. Westlake. 1981. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can. J. Microbiol. 27:692–697.

    CAS  Google Scholar 

  23. Petrovskis, E. A., T. M. Vogel, and P. Adriaens. 1994. Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-I. FEMS Microbiol. Lett. 121:357–364.

    CAS  Google Scholar 

  24. Picardal, F., R. G. Arnold, and B. B. Huey. 1995. Effects of electron donoor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200. Appl. Environ. Microbiol. 61:8–12.

    CAS  Google Scholar 

  25. Picardal, F. W. 1992. Ph.D. Dissertation. University of Arizona, Tucson, AZ.

    Google Scholar 

  26. Picardal, F. W., R. G. Arnold, H. Couch, A. M. Little, and M. E. Smith. 1993. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl. Environ. Microbiol. 59:3763–3770.

    CAS  Google Scholar 

  27. Stromeyer, S. A., K. Stumpf, A. M. Cook, and T. Leisinger. 1992. Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: separation of dechlorinative activities in cell extracts and roles for vitamin B12 and other factors. Biodegradation 3:113–123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Picardal, F.W., Kim, S., Radue, A., Backhus, D. (1997). Anaerobic Transformations of Carbon Tetrachloride: Combined Bacterial and Abiotic Processes. In: Tedder, D.W., Pohland, F.G. (eds) Emerging Technologies in Hazardous Waste Management 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5387-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5387-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7459-6

  • Online ISBN: 978-1-4615-5387-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics