Endothelial Sialyl Lewis X as a Crucial Glycan Decoration on L-Selectin Ligands

  • Risto Renkonen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)


Inflammatory reactions, such as organ transplant rejections, are characterized by lymphocyte infiltration into the tissue1. This extravasation of lymphocytes is initiated by the interaction of members of the selectin family and their ligands, which leads to a vascular shear flow-dependent rolling on the endothelial surfaces2–5. Of the three identified selectins, L-selectin is expressed on leukocyte surfaces and it recognizes glycoprotein ligands on endothelium6–8. Three characterized mucin-like heavily O-glycosylated proteins; GlyCAM-1, CD34 and MAdCAM-1 are endothelial L-selectin ligands9–11. These ligands recognize L-selectin only when posttranslationally glycosylated in a proper manner. So far only the crucial glycoforms of murine GlyCAM-1 have been characterized in great detail and they have been shown to be α2,3 sialylated, α1,3 fucosylated and sulfated, i.e. carry sialyl Lewis x (sLex) and/or sulfated sLex, respectively12–16. L-selectin was first characterized to guide lymphocyte traffic to lymph nodes and to sites of inflammation17. Today it is also known to participate in the rolling of leukocytes on vascular endothelium6–8. The two other members of selectin adhesion molecule family, E- and P-selectin, are expressed on activated endothelium3,18 and their glycoprotein ligands on leukocytes are active only when properly decorated with fucosylated oligosaccharides.


Matrix Assisted Laser Desorption Ionisation Sialic Acid Capillary Endothelium Leukocyte Adhesion Deficiency Lymphocyte Homing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Renkonen, A. Soots, E. von Willebrand, P. Häyry, Lymphoid cell subclasses in rejecting renal allograft in the rat. Cell Immunol. 77:188–195 (1983).CrossRefGoogle Scholar
  2. 2.
    K. Ley, T. Tedder, Leukocyte interactions with vascular endothelium. J Immunol. 155:525–528 (1995).PubMedGoogle Scholar
  3. 3.
    R.P. McEver, K.L. Moore, R.D. Cummings, Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem. 270:11025–11028 (1995).PubMedCrossRefGoogle Scholar
  4. 4.
    E.C. Butcher, L.J. Picker, Lymphocyte homing and homeostasis. Science. 272:60–66 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    T.A. Springer, Traffic signals on endothelium for lymphocyte recirculation and leukocyte migration. Annu Rev Physiol. 57:827–872 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    L.A. Lasky, Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem. 64:113–139 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    S.D. Rosen, C.R. Bertozzi, The selectins and their ligands. Current opinion in cell biology. 6:663–673 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Vestweber, Ligand-specificity of the selectins. J Cell Biochem. 61:585–91 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    L.A. Lasky, M.S. Singer, D. Dowbenko, Y. Imai, W.J. Henzel, C. Grimley, C. Fennie, N. Gillett, S.R. Watson, S.D. Rosen, An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell. 69:927–938 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Baumhueter, M.S. Singer, W. Henzel, S. Hemmerich, M.R. Renz, S.D. Rosen, L.A. Lasky, Binding of L-selectin to vascular sialomucin CD34. Science. 262:436–438 (1993).CrossRefGoogle Scholar
  11. 11.
    M.J. Briskin, L.M. McEvoy, E.C. Butcher, MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgAl. Nature. 363:461–464 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Imai, L.A. Lasky, R.D. Rosen, Sulphation requirements for GlyCAM-1, an endothelial ligand for L-selectin. Nature. 361:555–557 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Hemmerich, C.R. Bertozzi, H. Leffler, S.D. Rosen, Identification of the sulfated monosaccharides of GlyCAM-1, an endothelial-derived ligand for L-selectin. Biochemistry. 33:4820–4829 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Hemmerich, S.D. Rosen, 6’-sulfated sialyl Lewis x is a major capping group of GlyCAM-1. Biochemistry. 33:4830–4835 (1994).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Crommie, S.D. Rosen, Biosynthesis of GlyCAM-1, a mucin-like ligand for L-selectin. Journal of Biological Chemistry. 270:22614–24 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Hemmerich, H. Leffler, S.D. Rosen, Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. Journal of Biological Chemistry. 270:12035–47 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    W.M. Gallatin, I.L. Weisman, E.C. Butcher, A cell surface molecule involved in organ-specific homing of lymphocytes. Nature. 303:30–34 (1983).CrossRefGoogle Scholar
  18. 18.
    M.P. Bevilacqua, R.M. Nelson, G. Mannori, O. Cecconi, Endothelial-leukocyte adhesion molecules in human disease. Annual Review of Medicine. 45:361–78 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Bertozzi, Cracking the carbohydrate code for selectin recognition. Chemistry and Biology. 2:703–708 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    J.F. Kukowska-Latallo, R.D. Larsen, R.P. Nair, J.B. Lowe, A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4)fucosyltransferase. Genes & Development. 4:1288–1303 (1990).CrossRefGoogle Scholar
  21. 21.
    E.L. Berg, M.K. Robinson, O. Mansson, E.C. Butcher, J.L. Magnani, A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem. 266:14869–14872 (1991).PubMedGoogle Scholar
  22. 22.
    A. Takada, K. Ohmori, N. Takahashi, K. Tsoyuoka, A. Yago, K. Zenita, A. Hasegawa, R. Kannagi, Adhesion of human cancer cells to vascular endothelium mediated by carbohydrate antigens, sialyl Lewis A. Biochem Biophys Res Comm. 179:713–719 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    C.-T. Yuen, K. Bezouska, J. O’Brien, M. Stoll, R. Lemoine, A. Lubineau, M. Kiso, A. Hasekawa, N. Bockovich, K.C. Nicolaou, T. Feizi, Sulfated blood group Lewis a. A superior oligosaccharide ligand for human E-selectin. J Biol Chem. 269:1596–1598 (1994).Google Scholar
  24. 24.
    C.-T. Yuen, A.M. Lawson, W. Chai, M. Larkin, M.S. Stoll, A.C. Stuart, F.X. Sullivan, T.J. Ahern, T. Feizi, Novel sulfated ligands for cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharides on an ovarian cystadenoma glycoprotein. Biochemistry. 31:9126–9131 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    P. Maly, A.D. Thall, B.R. Petryniak, C.E. P.L. Smith, R.M. Marks, R.J. Kelly, K.M. Gersten, G. Cheng, T.L. Saunders, S.A. Camper, R.T. Camphausen, F.X. Sullivan, Y. Isogai, O. Hindsgaul, U.H. von Andrian, J.B. Lowe, The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficing through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell. 86:643–653 (1996).PubMedCrossRefGoogle Scholar
  26. 26.
    D.X. Wen, B.D. Livigston, K.F. Medzihradszky, S. Kelm, A.L. Burlingame, J.C. Paulson, Primary structure of Galβ1,3(4)GlcNAc α2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. J Biol Chem. 267:21011–21019 (1992).PubMedGoogle Scholar
  27. 27.
    K. Sasaki, E. Watanabe, K. Kawashima, S. Sekine, T. Dohi, M. Oshima, N. Hanai, T. Nishi, M. Hasegawa, Expression cloning of a novel Gal beta (1–3/1–4) GlcNAc alpha 2,3-sialyltransferase using lectin resistance selection. Journal of Biological Chemistry. 268:22782–7 (1993).PubMedGoogle Scholar
  28. 28.
    K. Sasaki, Molecular cloning and characterization of sialyltransferases. Trends in Glycoscience and Glycotechnology. 8:195–215 (1996).CrossRefGoogle Scholar
  29. 29.
    S.E. Goelz, C. Hession, D. Goff, B. Griffiths, R. Tizard, B. Newman, G. Chi-Rosso, R. Lobb, ELFT: a gene that directs the expression of an ELAM-1 ligand. Cell. 63:1349–1356 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Kumar, B. Potvin, W.A. Muller, P. Stanley, Cloning of a human α(1,3)-fucosyltransferase gene that encodes ELFT but does not confer ELAM-1 recognition on Chinese hamster ovary cell tranfectants. J Biol Chem. 266:21777–21783 (1991).PubMedGoogle Scholar
  31. 31.
    J.B. Lowe, J.F. Kukowska-Latallo, R.P. Nair, R.D. Larsen, R.M. Marks, B.A. Macher, R.J. Kelly, L.K. Ernst, Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewisx and VIM-2 epitopes but not ELAM-1-dependent cell adhesion. J Biol Chem. 266:17467–17477 (1991).PubMedGoogle Scholar
  32. 32.
    B.W. Weston, R.P. Nair, R.D. Larsen, J. Lowe, B., Isolation of a novel human α(1,3)fucosyltransferase gene and molecular comparison of the human Lewis blood group α(1,3/1,4) fucosyltransferase gene. J Biol Chem. 267:4152–4260 (1992).PubMedGoogle Scholar
  33. 33.
    B.W. Weston, P.L. Smith, R.J. Kelly, J.B. Lowe, Molecular cloning of a fourth member of a human α(1,3)fucosyltransferase gene family. J Biol Chem. 267:24575–24584 (1992).PubMedGoogle Scholar
  34. 34.
    K. Sasaki, K. Kurata, K. Funayama, M. Nagata, E. Watanabe, S. Ohta, N. Hanai, T. Nishi, Expression cloning of a novel alpha 1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis x carbohydrate determinants in leukocytes. Journal of Biological Chemistry. 269:14730–7 (1994).PubMedGoogle Scholar
  35. 35.
    S. Natsuka, K.M. Gersten, K. Zenita, R. Kannagi, J.B. Lowe, Molecular cloning of a cDNA encoding a novel human leukocyte α-1,3-fucosyltransferase capable of synthesizinga the sialyl Lewis x determinant. J BIol Chem. 269:16789–16794 (1994).PubMedGoogle Scholar
  36. 36.
    J.C. Paulson, J.P. Prieels, L.R. Glasgow, R.L. Hill, Sialyl-and fucosyltransferases in the biosynthesis of asparaginyl-linked oligosaccharides in glycoproteins. Journal of Biological Chemistry. 253:5617–24 (1978).PubMedGoogle Scholar
  37. 37.
    S.-I. Hakomori, Possible functions of tumor-associated carbohydrate antigens. Current Opinion in Immunol. 3:646–653 (1991).CrossRefGoogle Scholar
  38. 38.
    T. Paavonen, R. Renkonen, Selective expression of sialyl-Lewisx and sialyl Lewisa, putative ligands for L-selectin, on peripheral lymph node high endothelial venules. Am J Pathol. 141:1259–1264 (1992).PubMedGoogle Scholar
  39. 39.
    J.M. Munro, S.K. Lo, C. Corless, M.J. Robertson, N.C. Lee, R.L. Barhill, D.S. Weinberg, M.P. Bevilacqua, Expression of sialyl-Lewis x, an E-selectin ligand, in inflammation, immune processes and lymphoid tissues. Am J Pathol. 141:1397–1408 (1992).PubMedGoogle Scholar
  40. 40.
    M. Sawada, A. Takada, I. Ohwaki, N. Takahashi, H. Tatene, J. Sakamoto, R. Kannagi, Specific expression of a complex sialyl Lewis x antigen of high endothelial venules in human lymph nodes: Possible candidate for L-selectin ligand. Biochem Biophys Res Comm. 193:337–347 (1993).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Majuri, M. Pinola, R. Niemelä, S. Tiisala, O. Renkonen, R. Renkonen, α2,3 sialyland α1,3-fucosyltransferase-dependent synthesis of sialyl Lewis x, an essential oligosaccharide present in L-selectin counterreceptor in cultured endothelial cells. Eur J Immunol 24:3205–3210 (1994).PubMedCrossRefGoogle Scholar
  42. 42.
    M. Majuri, J. Räbinä, S. Tiisala, E. Aavik, P. Mattila, M. Miyasaka, O. Renkonen, R. Renkonen, High endothelial cells synthetize and degrade sLex via different pathways. Putative impications for the L-selectin-dependent extravasation. J Biol Chem submitted for publication. (1997).Google Scholar
  43. 43.
    J.P. Turunen, P. Mattila, J. Halttunen, P. Häyry, R. Renkonen, Evidence that lymphocyte traffic into rejecting cardiac allograft is CD11a-and CD49d-dependent. Transplantation. 54:1053–1058 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    R. Renkonen, J.P. Turunen, P. Häyry, Site of influx of inflammatory white cells into a rejecting rat renal allograft. Transplantation. 47:577–579 (1989).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Turunen, T. Paavonen, M. Majuri, S. Tiisala, P. Mattila, A. Mennander, C. Gahmberg, P. Häyry, T. Tamatani, M. Miyasaka, R. Renkonen, Sialyl-Lewisx and L-selectin-dependent site-specific lymphocyte extravasation into the renal transplants during acute rejection. Eur J Immunol. 24:1130–1136 (1994).PubMedCrossRefGoogle Scholar
  46. 46.
    K. Ito, K. Handa, S. Hakomori, Species-specific expression of sialosyl-Le(x) on polymorphonuclear leukocytes (PMN), in relation to selectin-dependent PMN responses. Glycoconjugate J. 11:232–237 (1994).CrossRefGoogle Scholar
  47. 47.
    J. Turunen, M. Majuri, A. Seppo, S. Tiisala, T. Paavonen, M. Miyasaka, K. Lemström, L. Penttilä, O. Renkonen, R. Renkonen, De novo expression of endothelial sialyl Lewis a and sialyl Lewis x during cardiac transplant rejection. Superior capacity of a tetravalent sLex-oligosaccharide in inhibiting L-selectin-dependent lymphocyte adhesion. J Exp Med. 182:1133–1142 (1995).PubMedCrossRefGoogle Scholar
  48. 48.
    P.A. Ward, M.S. Mulligan, Blocking of adhesion molecules in vivo as anti-inflammatory therapy. Therapeutic Immunology. 1:165–71 (1994).PubMedGoogle Scholar
  49. 49.
    M.S. Mulligan, J.C. Paulson, S. deFrees, Z.-L. Zheng, J.B. Lowe, P.A. Ward, Protective effects of oligosaccharides in P-selectin-dependent lung injury. Nature. 364:149–151 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    M.S. Mulligan, J.B. Lowe, R.D. Larsen, J. Paulson, Z.-L Zheng, S. DeFrees, K. Maemura, M. Fukuda, P.A. Ward, Protective effects of sialylated oligosaccharides in immune complex-induced acute lung injury. J Exp Med. 178:623–631 (1993).PubMedCrossRefGoogle Scholar
  51. 51.
    D.J. Lefer, D.M. Flynn, M.L. Phillips, M. Ratcliffe, A.J. Buda, A novel sialyl LewisX analog attenuates neutrophil accumulation and myocardial necrosis after ischemia and reperfusion. Circulation. 90:2390–401 (1994).PubMedCrossRefGoogle Scholar
  52. 52.
    C. Skurk, M. Buerke, J.P. Guo, J. Paulson, A.M. Lefer, Sialyl Lewisx-containing oligosaccharide exerts beneficial effects in murine traumatic shock. American Journal of Physiology. 267:H2124–31 (1994).PubMedGoogle Scholar
  53. 53.
    A. Seekamp, G.O. Till, M.S. Mulligan, J.C. Paulson, D.C. Anderson, M. Miyasaka, P.A. Ward, Role of selectins in local and remote tissue injury following ischemia and reperfusion. American Journal of Pathology. 144:592–8 (1994).PubMedGoogle Scholar
  54. 54.
    M. Buerke, A.S. Weyrich, Z. Zheng, F.C.A. Gaeta, M.J. Forrest, A.M. Lefer, Sialyl-Lewis x-containing oligosaccharide attenuates myocardial reperfusion injury in cats. J Clin Invest. 93:1140–1148 (1994).PubMedCrossRefGoogle Scholar
  55. 55.
    M.J. Silver, J.M. Sutton, S. Hook, P. Lee, J.L. Malycky, M.L. Phillips, S.G. Ellis, E.J. Topol, F.A. Nicolini, Adjunctive selectin blockade successfully reduces infarct size beyond thrombolysis in the electrolytic canine coronary artery model. Circulation. 92:492–9 (1995).PubMedCrossRefGoogle Scholar
  56. 56.
    E.A. Gill, Y.N. Kong, L.D. Horwitz, An oligosaccharide, sialyl Lewis x analoque does not reduce myocardial infarct size after ischemia and reperfusion in dogs. Circulation. 94:(1996).Google Scholar
  57. 57.
    K.T. Han, S.R. Sharar, M.L. Phillips, J.M. Harlan, R.K. Winn, Sialyl Lewis(x) oligosaccharide reduces ischemia-reperfusion injury in the rabbit ear. Journal of Immunology. 155:4011–5 (1995).Google Scholar
  58. 58.
    M.L. Arbones, D.C. Ord, K. Ley, H. Ratech, C. Maynard-Curry, G. Otten, D.J. Capon, T.F. Tedder, Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity. 1:247–260 (1994).PubMedCrossRefGoogle Scholar
  59. 59.
    P. Pizcueta, F.W. Luscinskas, Monoclonal antibody blockade of L-selectin inhibits mononuclear leukocyte recruitment to inflammatory sites in vivo. Am J Pathol. 145:461–469 (1994).PubMedGoogle Scholar
  60. 60.
    R.T. Lee, P. Lin, Y.C. Lee, New synthetic cluster ligands for galactose/N-acetylgalactosamine-specific lectin of mammalian liver. Biochemistry. 23:4255–4261 (1984).PubMedCrossRefGoogle Scholar
  61. 61.
    R.T. Lee, K.G. Rice, N. Rao, Y. Ichikawa, T. Barthel, Binding characteriztics opf N-acetylglucosamine-specific lectin of the isolated chicken hepatocytes: similarities to mammalial hepatic galactose/N-acetylgalactosamine-specific lectin. Biochemistry. 28:(1989).Google Scholar
  62. 62.
    S.A. DeFrees, C.A. Gaeta, Y.-C. Lin, Y. Ichikawa, C.-H. Wong, Ligand recognition by E-selectin: Analysis of conformation and activity of synthetic monomeric and bivalent sialyl Lewis x analogs. J Am Chem Soc. 115:7549–7550 (1993).CrossRefGoogle Scholar
  63. 63.
    S.A. DeFrees, W. Kosch, W. Way, J.C. Paulson, S. Sabesan, R.L. Halcomb, D.-H. Huang, Y. Ichikawa, C.H. Wong, Ligand recognition by E-selectin: Synthesis, inhibitory activity and conformational analysis of bivalent sialyl Lewis x analogs. J Am Chem Soc. 117:66–79 (1995).CrossRefGoogle Scholar
  64. 64.
    R. Niemelä, L. Penttilä, A. Seppo, J. Helin, A. Leppänen, J. Räbinä, L. Uusitalo, H. Maaheimo, J. Taskinen, C. Costello, R. O., Enzyme-assisted synthesis of a divalent high-affinity oligosaccharide inhibitor of mouse gamete adhesion. Febs Lett. 367:67–72. (1995).PubMedCrossRefGoogle Scholar
  65. 65.
    R. Niemelä, J. Natunen, E. Brotherus, A. Saarikangas, O. Renkonen, α1,3-fucosylation of branched I-type oligo-(N-acetyllactosamino)-glycans by human milk transferases is restricted to distal N-acetyllactosamine units: Resulting isomeres are separated by WGA-agarose chromatography. Glycoconjugate J. 12:36–44 (1994).CrossRefGoogle Scholar
  66. 66.
    A. Seppo, J.P. Turunen, L. Penttilä, A. Keane, O. Renkonen, R. R., Enzymatically synthesized oligovalent sialyl Lewis x glycans are high-affinity inhibitors of L-selectin-mediated lymphocyte binding to endothelium. Glycobiology. 6:65–71 (1996).PubMedCrossRefGoogle Scholar
  67. 67.
    H. Maaheimo, R. Renkonen, J. Turunen, L. Penttilä, O. Renkonen, Synthesis of a divalent sialyl Lewis x O-glycan, a potent inhibitor of lymphocyte-endothelium adhesion. Evidence that multivalency enhances the saccharide binding to L-selectin. Eur J Biochem. 234:616–625 (1995).PubMedCrossRefGoogle Scholar
  68. 68.
    O. Renkonen, S. Toppila, L. Penttilä, J. Helin, H. Maaheimo, C. Costello, J. Turunen, R. Renkonen, Enzyme-assisted synthesis of a tetravalent sialyl Lewis x glycan, derived from a linear polylactosamine. Glycobiology accepted for publication. (1997).Google Scholar
  69. 69.
    G.D. Glick, P.L. Toogood, D.C. Wiley, J.J. Skehel, J.R. Knowles, Ligand recognition by influenza virus. The binding of bivalent sialosides. J Biol Chem. 266:23660–23669 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Risto Renkonen
    • 1
  1. 1.Department of Bacteriology and Immunology Haartman InstituteUniversity of HelsinkiHelsinkiFinland

Personalised recommendations