Advertisement

Role of Glycan Processing in Hepatitis B Virus Envelope Protein Trafficking

  • Timothy M. Block
  • Xuanyong Lu
  • Anand Mehta
  • Jason Park
  • Baruch S. Blumberg
  • Raymond Dwek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)

Abstract

We have previously shown that the glucosidase inhibitor, NBDNJ, prevents HBV virion but not subviral particle secretion from stably transfected HepG2 cells (Block et al, 1994). Moreover, the inhibition of virion secretion was due to the inhibition of the ER glucosidase (Lu et al, 1995). To determine which envelope protein functions require glycan processing and to understand the consequences to a glycoprotein of bearing unprocessed glycan, it was of interest to know the specific steps in the virus life cycle which were upset in cells in which ER glucosidase was inhibited

Keywords

Envelope Protein Viral Envelope Protein Glycan Processing Cell BioI Alternate Translation Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Barinaga, 1993, Secrets of secretion revealed, Science, 260: 488–9Google Scholar
  2. Beasley, R. P. (1988). The Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer. 61: 1942–1956..PubMedCrossRefGoogle Scholar
  3. Block, T., Platt, F., Xuanyong, L., Gerlich, W., Foster, G., Blumberg, B., Dwek, R. Secretion of human hepatitis B virus is inhibited by the imino sugar, N-butyldeoxynojirimycin. Proc. Natl. Acad. Sci. (USA) 91: 2235–2239.Google Scholar
  4. Bruss, V., D. Ganem. (1991). The role of envelope proteins in hepatitis b virus assembly. Proc. Natl. Acad. Sci. USA. 88: 1059–1063.PubMedCrossRefGoogle Scholar
  5. Chen, W., J. Helenius, I. Braakman and A. Helenius (1995). Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc. Natl. Scad. Sci. (USA). 92: 6229–6233.CrossRefGoogle Scholar
  6. Datema, S. Olofsson, P. Romero. (1987), Inhibitors of protein glycosylation and glycoprotein processing in viral systems. Pharmacol. Thera., 33: 221–286CrossRefGoogle Scholar
  7. Dwek, R. A. (1995). Glycobiology: more functions for oligosaccharides. Science. 269: 1234–1235.PubMedCrossRefGoogle Scholar
  8. Elbein, A. D. (1991) Amino sugar compounds as antiviral and anti tumor agents, Sem. cell Biol., 2; 309–317Google Scholar
  9. Fischl, M., L. Resnick, R. Coombs, A. Kremer, J. Potage et al (1994), The safety and efficacy of combination therapy N-butyl deoxynojirimycin (SC-48334) and Zidovudine in patients with HIV infection and 200–500 CD4 cells/ mm3. J. Acq. Imm. Def. S., 7: 139–147Google Scholar
  10. Ganem, D. (1991) Assembly of hepadnavirus virions and subviral particles. In: Hepadnaviruses, Current topics in Microbiol, and Immunol. (W. Mason and C. Seeger, Eds.) 168: 61–84Google Scholar
  11. Gerlich, W. (1993) Structure and molecular biology (of HBV). In: Zuckerman, A. & H. C. Thomas, Viral hepatitis, pp. 83–113. Chruchill Livingston Publishers, London, UK.Google Scholar
  12. Hammand and Helenius, 1994a, Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, Intermediate compartment and Golgi Apparatus, JCB, 126: 41–52).CrossRefGoogle Scholar
  13. Hammond, C., and A. Helenius, 1994b, Folding of VSV G protein: sequential interaction with BIP and calnexin. Science. 266: 456458.CrossRefGoogle Scholar
  14. Hammond, C., I. Braakman and A. Helenius, 1994, Role of N linked oligosaccharide recognition, glucose trimming and calnexin in glycoprotein folding and quality control. Proc. Natl Acad. Sci.. 91: 913–917PubMedCrossRefGoogle Scholar
  15. Haas, I. G. and Wabl (1983). Immunoglobulin heavy chain binding protein. Nature. 306: 387–389.PubMedCrossRefGoogle Scholar
  16. Heerman, H-H, Goldman, I., Schwartz, W., Seyffarth, T., Baumgarten, H. Gerlich, W. H. Large surface proteins of hepatitis b virus containing preS sequence. (1984) J. Virol 52: 396–402)Google Scholar
  17. Heermann, K-H, Gerlich, W.H. (1992), In: Mol. Biol of HBV, A Maclachlan, ed, CRC Press, Boca R raton FlGoogle Scholar
  18. Helenius, A. (1994) How N linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell. 5: 253–265.PubMedGoogle Scholar
  19. Herbert, D. N., B. Foellmer and A. Helenius (1995). Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 81: 425–433.CrossRefGoogle Scholar
  20. Huovila, A. P., A. Eder and S. Fuller (1992) Hepatitis B surface antigen assembles in a post ER, pre golgi compartment. J. Cell Biol. 118: 1305–1320.PubMedCrossRefGoogle Scholar
  21. Karlsson, G.B., Butters, T. D., Dwek, R.A., Platt, F.M., (1993) Effects of the imino sugar N butyldeoxynojirimycin on the N glycosylation of recombinant gp120 J. Biol. Chem., 268: 570–576.PubMedGoogle Scholar
  22. Kim, P. S. and P. Arvin (1995) Calnexin and BiP as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J. Cell Biol. 128: 29–38.PubMedCrossRefGoogle Scholar
  23. Leavitt, R., Schlesinger, S., Kornfeld, S. 1979. Impaired intracellular migration and altered solubility of of non glycosylated glycoproteins of vesicular stomatitis virus. J. Biol. Chem. 252: 9018–9023Google Scholar
  24. Lenter, M. and D. Vestweber (1994). The integrin chains b1 and a6 associate with the chaperon calnexin prior to integrin assembly. J. Biol. Chem. 269: 12263–12268.PubMedGoogle Scholar
  25. Lodish, H., A. Kong (1984). Glucose removal from N linked oligosacchairdes is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulim to the Golgi compartment. J. Cell. Biol. 98: 1720–1729.PubMedCrossRefGoogle Scholar
  26. Lu, X., A. Mehta, T. Butters, R. Dwek and T. Block (1995) Evidence that N-linked glycosylation is necessary for hepatitis B virus secretion. Virol. 213: 660–665.CrossRefGoogle Scholar
  27. Lu, X., T. Block and W. Gerlich (1996) Protease induced infectivity of human hepatitis B virus for continuous cultures of human liver cells. J. Virol., in press.Google Scholar
  28. Lu, X., A. Mehta, M. Dadmarz, B. Blumberg, R. Dwek and T. Block (1997) Aberrant trafficking of hepatitis B virus glycoproteins in cells in which N-glycan processing is inhibited. Proc. Natl. Acad. Sci. USA, vol 94: 2380–2385.PubMedCrossRefGoogle Scholar
  29. Lubas, W.A., Spiro, R.G. (1988). Evaluation of the role of rat liver golgi endo alpha mannosidase in processing N linked oligosaccharides. J. Biol. Chem. 263: 3990–3998.PubMedGoogle Scholar
  30. Mehta, A., X. Lu, T. Block, B. Blumberg, R. Dwek (1996) Similar glycoproteins with drastically different sensities to glycosylation processing (Submitted).Google Scholar
  31. Moore, S. and R. Spiro (1993). Inhibiton of glucopse triming by castaospermine results in rapid degradation od unassembled major histocompatribility complex class I molecules. J. Biol. Chem. 268: 3809–3812.PubMedGoogle Scholar
  32. Moore, S. E. and R. G. Spiro (1990) Demonstration that Golgi Endo-a-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linkied oligosaccharides og glycoproteins. J. Biol. Chem. 265: 1304–13112.Google Scholar
  33. Otteken, A. and B. Moss (1996) Calreticulin interacts with newly synthesized human immunodeficiency virus type I envelope glycoproetin, suggesting a chaperone function similar to that of calnexin. J. Biol. Chem. 271: 97–103.PubMedCrossRefGoogle Scholar
  34. Ou, W. J., P. H. Cameron, D. Y. Thomas and J. J. M. Bergeron (1993) Association of folding intermediates of glycoproteins with calnexin. Nature. 364: 771–776.PubMedCrossRefGoogle Scholar
  35. Parent, B., T-K. Yeo and K. Olden (1986). Differential effects of 1-deoxynojirimycin on the intracellular transfport of sceretory glycoprotiens in human hepatoma cells in culture. Mol. Cell. Biochem. 72: 21–33.PubMedCrossRefGoogle Scholar
  36. Patzer, E., Nakamura, G., Yaffe, A., Intracellular transport and secretion of hepatitis B surface antigen in mammalian cells. (1984), J. Virol., 51: 346–353PubMedGoogle Scholar
  37. Patzer, E.J., Nakamura, G.R., Simonsen, G.C., Levinson, A.L., Brands, R.(1986), Intracellular packaging and assembly of hepatitis b surface antigen particles occurs in the endoplasmic reticulim. J. Virol. 58: 884–892PubMedGoogle Scholar
  38. Pelham, H. R. B. (1991) Recycling of proteins between the endoplasmic reticulum and the Golgi complex. Curr. Opin. Cell Biol. 3: 585–591.PubMedCrossRefGoogle Scholar
  39. Perrillo, R.P., Schift, ER, Davis, GL, Bodenheimer, HC, Lindsay, K., Payne, J., Dienstag, JL, O’Brien, C., Tamburro, C., Jacobson, IM, Sampliner, R., Feit, D., Lefkowitch, J., Kuhns, M., Meschievitz, C., Sanghvi, B., Albrecht, J., Gibas, A. (1990), A randomized controlled trial of interferon alpha 2b alone and after prednisone withdrawal for the treatment of chronic hepatitis b. New Eng. J. Med. 323: 295–301..PubMedCrossRefGoogle Scholar
  40. Peterson,, DL, (1981), Isolation and characterization of the major protein and glycoprotein of hepatitis B surface antigen. J. Biol. Chem., 256: 6975–6983PubMedGoogle Scholar
  41. Platt F. G. Nieses, R. Dwek, T. Butters, (1994), NBDNJ is a novel inhibitor of glycolipid biosynthesis, J. Biol. Chem., 269: 8362–8365Google Scholar
  42. Platt, F., G. B. Karlsson & G. S. Jacob, (1992), Modulation of cell surface transferrin receptor by the imino sugar N butyldeoxynojirimycin. Eur. J. Biochem. 208: 187–193.PubMedCrossRefGoogle Scholar
  43. Rothman, J. E. and L. Orci (1992) Molecular dissection of the secretory pathway. Nature. 355: 409–415.PubMedCrossRefGoogle Scholar
  44. Saunier, B., Kilker, R.D., Tkacz, J.S., Quaroni, A., Herscovics, A.C. Inhibition of N linked complex oligosaccharide formation by 1 deoxynojirimycin. (1982). J. Biol. Chem. 257: 14155–14161.PubMedGoogle Scholar
  45. Sells, M.A., M. L. Chen, G. Acs, (1987). Production of hepatitis b virus particles in Hep G2 cells transfected with cloned hepatitis b virus DNA. Proc. Natl. Acad. Sci. USA. 84: 1005–1009.PubMedCrossRefGoogle Scholar
  46. Summers, J., Mason, W.H. (1982). Replication of the genome of hepatitis b virus by reverse transcription of an RNA intermediate. Cell. 29: 403–415.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Timothy M. Block
    • 1
  • Xuanyong Lu
    • 1
  • Anand Mehta
    • 1
    • 2
  • Jason Park
    • 1
  • Baruch S. Blumberg
    • 2
    • 3
  • Raymond Dwek
    • 3
  1. 1.Viral Hepatitis GroupKimel Cancer Center of Jefferson Medical CollegePhiladelphiaUSA
  2. 2.Glycobiology IntsituteOxford UniversityOxfordUK
  3. 3.Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations