Advertisement

The Role of the Lectin Calnexin in Conformation Independent Binding to N-Linked Glycoproteins and Quality Control

  • John J. M. Bergeron
  • A. Zapun
  • W.-J. Ou
  • R. Hemming
  • F. Parlati
  • P. H. Cameron
  • D. Y. Thomas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)

Abstract

It has often been speculated that one of the selective forces for the evolution of Nlinked glycosylation is that of productive protein folding. Strong experimental support has now been put forward as a consequence of studies with the endoplasmic reticulum resident membrane protein calnexin and its luminal homologue calreticulin. These resident proteins, at least one of which (calnexin) is universal to all eukaryotes, act principally as lectins which recognize monoglucosylated intermediates of high mannose containing N-linked glycoproteins. A molecular chaperone apparatus consisting of the coupled actions of uridine diphosphate glucose: glycoprotein glucosyl transferase, calnexin/calreticulin and glucosidase II has been reconstituted using fully defined constituents in vitro. That this apparatus also functions as one of the regulatory mechanisms in the identification and triaging of misfolded glycoproteins (quality control) has also shown recent experimental support. From the perspective of calnexin N-linked glycosylation and more specifically monoglucosylation allows the temporal coupling of glycoprotein folding within the spatial confines of the endoplasmic reticulum and provides a mechanism to direct misfolded glycoproteins away from productive folding intermediates.

Keywords

Endoplasmic Reticulum Cystic Fibrosis Transmembrane Conductance Regulator Folding Intermediate Resident Protein Diphosphate Glucose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahluwalia, N., Bergeron, U.M., Wada, I., Degen, E., and Williams, D.B. 1992. The p88 molecular chaperone is identical to the endoplasmic reticulum membrane protein, calnexin. J. Biol Chem. 267:10914–10918.PubMedGoogle Scholar
  2. Baass, P.C., DiGuglielmo, G.M., Authier, F., Posner, B.I., and Bergeron, J.J.M. 1995. Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol. 5:465–470.PubMedCrossRefGoogle Scholar
  3. Burns, K., Atkinson, E.A., Bleackley, R.C., and Michalak, M. 1994. Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol. 4:152–154.PubMedCrossRefGoogle Scholar
  4. Capps, G.G., and Zuniga, M.C. 1994. Class I histocompatibility molecule association with phosphorylated calnexin. J. Biol. Chem. 269:11634–11639.PubMedGoogle Scholar
  5. Chen, W., Helenius, J., Braakman, I., Helenius, A. 1995. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc. Natl. Acad. Sci. USA. 92:6229–6233.PubMedCrossRefGoogle Scholar
  6. Dedhar, S. 1994. Novel functions for calreticulin: interaction with integrals and modulation of gene expression? Trends Biochem. Sci. 19:269–271.PubMedCrossRefGoogle Scholar
  7. Degen, E., and Williams, D.B. 1991. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J. Cell Biol. 112:1099–1115.PubMedCrossRefGoogle Scholar
  8. Fiedler, K., Veit, M., Stamnes, M.A., and Rothman, J.E. 1996. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science. 273:1396–1399.PubMedCrossRefGoogle Scholar
  9. Görlich, D., Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedmann, M., Knespel, S., Dobberstein, B. and Rapoport, T.A. 1990. The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents. J. Cell Biol. 111:2283–2294.PubMedCrossRefGoogle Scholar
  10. Hammond, C., Braakman, I., and Helenius, A. 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA. 91:913–917.PubMedCrossRefGoogle Scholar
  11. Hammond, C., and Helenius, A. 1993. A chaperone with a sweet tooth. Current Biology. 3:884–886.PubMedCrossRefGoogle Scholar
  12. Hebert, D.N., Foellmer, B., and Helenius, A. 1995. Glucose trimming and reglueosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 81:425–433.PubMedCrossRefGoogle Scholar
  13. Hochstenbach, F., David, V., Watkins, S., Brenner, M.B. 1992. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T-and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc. Natl. Acad. Sci. USA. 89:4734–4738.PubMedCrossRefGoogle Scholar
  14. Hurtley, S.M., and Helenius, A. 1989. Protein oligomerizaton in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5:277–307.PubMedCrossRefGoogle Scholar
  15. Jackson, M.R., Nilsson, T., and Peterson, P.A. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9:3153–3162.PubMedGoogle Scholar
  16. Jensen, T.J., Loo, M.A., Pind, S., Williams, D.B., Goldberg, A.L., and Riordan, J.R. 1995. Multiple proteolytic systems including the proteasome, contribute to CFTR processing. Cell. 83:129–135.PubMedCrossRefGoogle Scholar
  17. Kay, D.G., Lai, W.H., Uchihashi, M., Khan, M.N., Posner, B.I., and Bergeron, J.J.M. 1986. Epidermal growth factor receptor kinase translocation and activation in vivo. J. Biol Chem. 261:8473–8480.PubMedGoogle Scholar
  18. Kearse, K.P., Williams, D.B., and Singer, A. 1994. Persistence of glucose residues on core oligosaccharides prevents association of TCR α and TCRβ proteins with calnexin and results specifically in accelerated degradation of nascent TCR α proteins within the endoplasmic reticulum. EMBO J. 13:3678–3686.PubMedGoogle Scholar
  19. Khan, M.N., Savoie, S., Bergeron, J.J.M. and Posner, B.I. 1986. Characterization of rat liver endosomal fractions: In vivo activation of insulin-stimulable receptor kinase in these structures. J. Biol. Chem. 261:8462–8472.PubMedGoogle Scholar
  20. Le, A., Steiner, J.L., Ferrell, G.A., Shaker, J.C. and Sifers, R.N. 1994. Association between calnexin and a secretion-incompetent variant of human α1-antitrypsin. J. Biol. Chem. 269:7514–7519.PubMedGoogle Scholar
  21. Li, Y., Bergeron, J.J.M., Luo, L., Ou, W-J., Thomas, D.Y., and Kang, C.Y. 1996. Effects of inefficient cleavage of the signal sequence of HIV-1 gp120 on its association with calnexin, folding, and intracellular transport. Proc. Natl. Acad. Sci. USA. 93:9606–9611.PubMedCrossRefGoogle Scholar
  22. Lodish, H.F. 1988. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi: A rate-limiting step in protein maturation and secretion. J. Biol. Chem. 263:2107–2110.PubMedGoogle Scholar
  23. Lodish, H.F., and Kong, N. 1984. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J. Cell Biol. 98:1720–1729.PubMedCrossRefGoogle Scholar
  24. McCracken, A.A., and Brodsky, J.L. 1996. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132:291–298.PubMedCrossRefGoogle Scholar
  25. Michalak, M., Milner, R.E., Burns, K., Opas, M. 1992. Calreticulin. Biochemical J. 285:681–692.Google Scholar
  26. Migliaccio, G., Nicchitta, C.V., and Blobel, G. 1992. The signal sequence receptor, unlike the signal recognition particle receptor, is not essential for protein translocation. J. Cell Biol. 117:15–25.PubMedCrossRefGoogle Scholar
  27. Ora, A., and Helenius, A. 1995. Calnexin fails to associate with substrate proteins in glucosidase-deficient cell lines. J. Biol. Chem. 270:26060–26062.PubMedCrossRefGoogle Scholar
  28. Ou, W-J., Thomas, D.Y., Bell, A.W., and Bergeron, J.J.M. 1992. Casein kinase II phosphorylation of signal sequence receptor α and the associated membrane chaperone calnexin. J. Biol-Chem. 267:23789–23796.PubMedGoogle Scholar
  29. Ou, W-J., Cameron, P.H., Thomas, D.Y. and Bergeron, J.J.M. 1993. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 364:771–776.PubMedCrossRefGoogle Scholar
  30. Parlati, F., Dominguez, M., Bergeron, J.J.M., and Thomas, D.Y. 1995a. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270:244–253.PubMedCrossRefGoogle Scholar
  31. Parlati, F., Dignard, D., Bergeron, J.J.M., and Thomas, D.Y. 1995b. The calnexin homologue cnxl+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. EMBQ J. 14:3064–3072.Google Scholar
  32. Parodi, A.J., Mendelzon, D.H., Lederkremer, G.Z., and Martin-Barrientos, J. 1984. Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2 occurs in rat liver and phaseolus vulgaris cells. J. Biol, Chem. 259:6351–6357.Google Scholar
  33. Pind, S., Riordan, J.R., and Williams, D.B. 1994. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269:12784–12788.PubMedGoogle Scholar
  34. Prehn, S., Herz, J., Hartmann, E., Kurzchalia, T.V., Frank, R., Roemisch, K., Dobberstein, B., and Rapoport, T.A. 1990. Structure and biosynthesis of the signal-sequence receptor. Eur. J. Biochem. 188:439–445.PubMedCrossRefGoogle Scholar
  35. Qu, D., Teckman, J.H., Omura, S., and Perlmutters, D.H. 1996. Degradation of a mutant secretory protein, α1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271:22791–22795.PubMedCrossRefGoogle Scholar
  36. Rothman, J.E., and Wieland, F.T. 1996. Protein sorting by transport vesicles. Science. 272:227–234.PubMedCrossRefGoogle Scholar
  37. Rindress, D., Lei, X., Ahluwalia, J.P.S., Cameron, P.H., Fazel, A., Posner, B.I., and Bergeron, J.J.M. 1993. Organelle specific phosphorylation: Identification of unique membrane phosphoproteins of the endoplasmic reticulum and endosomal apparatus. J. Biol Chem. 268:5139–5147.PubMedGoogle Scholar
  38. Schimmoller, F., Singer-Kruger, B., Schroder, S., Kruger, U., Barlowe, C., and Riezman, H. 1995. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBQ J. 14:1329–1339.Google Scholar
  39. Yeo, K.T., Yeo, T.K., and Olden, K. 1989. Bromoconduritol treatment delays intracellular transport of secretory glycoproteins in human hepatoma cell cultures. Biochem. Biophys. Res. Comm. 161:1013–1019.PubMedCrossRefGoogle Scholar
  40. Wada, I., Rindress, D., Cameron, P.H., Ou, W-J., Doherty, II, J-J. Louvard, D., Bell, A.W., Dignard, D., Thomas, D.Y., and Bergeron, J.J.M. 1991. SSR α and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266:19599–19610.PubMedGoogle Scholar
  41. Wada, I., Lai, W.H., Posner, B.I., and Bergeron, J.J.M. 1992. Asociation of the tyrosine phosphorylated epidermal growth factor receptor with a 55-kD tyrosine phosphorylated protein at the cell surface and in endosomes. J. Cell Biol. 116:321–330.PubMedCrossRefGoogle Scholar
  42. Ward, C.L., Omura, S., and Kopito, R.R. 1995. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127.PubMedCrossRefGoogle Scholar
  43. Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A., and Williams, D.B. 1995. The molecular chaperone calnexin binds GlclMan9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270:4697–4704.PubMedCrossRefGoogle Scholar
  44. Williams, D.B., Swiedler, S.J., and Hart, G.W. 1985. Intracellular transport of membrane glycoproteins: Two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol. 101:725–734.PubMedCrossRefGoogle Scholar
  45. Zapun, A., Petrescu, S.M., Rudd, P.M., Dwek, R.A., Thomas, D.Y., and Bergeron, J.J.M. 1996. Conformation independent binding of monoglucosylated ribonuclease B to calnexin. Cell (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John J. M. Bergeron
    • 1
  • A. Zapun
    • 1
    • 3
  • W.-J. Ou
    • 3
  • R. Hemming
    • 1
    • 3
  • F. Parlati
    • 2
    • 3
  • P. H. Cameron
    • 1
  • D. Y. Thomas
    • 1
    • 2
    • 3
  1. 1.Department of Anatomy and Cell BiologyMcGill UniversityMontrealCanada
  2. 2.Department of BiologyMcGill UniversityMontrealCanada
  3. 3.Biotechnology Research InstituteNRC of CanadaMontrealCanada

Personalised recommendations