Skip to main content

Short Interval Electrical Amygdala Kindling in Infant Rats

The Paradigm and Its Application to the Study of Age-Specific Convulsants

  • Chapter
Kindling 5

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 48))

Abstract

Kindling is a powerful paradigm for investigating seizure generation, propagation and generalization. Kindling has been extensively utilized as a model of limbic seizures in the adult rat, and its reproducibility and precision are also particularly useful for the study of epilepsy in the developing brain. In the juvenile rat (>15 days), the refractory period between stimuli is much shorter than in the adult, potentially reflecting the increased excitability of the immature brain during this developmental period. “Rapid” or short-interval amygdala kindling of juvenile rats has been characterized and studied extensively.

The neuropeptide, corticotropin releasing hormone (CRH), produces limbic seizures in adult rodents, with a latency of 7–9 hours. The temporal and behavioral similarities between CRH-induced seizures and electrical amygdala kindling have suggested a common mechanism. In the infant rat (7–14 days), intracerebroventricular (icv) administration of picomolar doses of CRH produces amygdala-origin prolonged seizures with a very short latency (two minutes). The goals of studies described in this report were: a) to determine whether the rapid amygdala kindling paradigm could be applied to infant rats. b) to characterize the behavioral and electrical parameters of the kindling paradigm at this age. c) to study the interaction of CRH-induced seizures and amygdala kindling during infancy in the rat.

Using the short-interval-kindling method, Stage 5 behavioral seizures were achieved even in 7-day-old pups. However, the progression of behavioral kindling was different from that of older rats, and the correlation between electrographic after-discharges and behavioral stages was inversely related to age. Reliable, progressive amygdala afterdis-charges were difficult to ascertain in many animals prior to postnatal day 9. Spontaneous seizures occurred relatively frequently in younger age groups. Administration of a specific blocker of CRH receptors either icy or into the amygdala did not alter the rate of kindling development. Once stage 5 seizures were achieved, blocking CRH-receptors did not affect the expression of these seizures.

In conclusion, electrical amygdala kindling using short inter-stimulus intervals is a reliable and reproducible paradigm in rats during the second postnatal week, suggesting significant functional maturity of the amygdala-limbic circuitry at this age. The data provide no evidence for a mechanistic interaction between amygdala kindling and amygdalaorigin CRH-induced seizures in the developing rat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goddard, G.V., McIntyre, D. and Leech, C.K., A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol., 25 (1969) 295–330.

    CAS  Google Scholar 

  2. Lothman, E.W., Bertram, E.H., III and Stringer, J. L., Kindling, a model of epilepsy, in: Functional anatomy of hippocampal seizures, Prog. Neurobiol., 37 (1991) 1–82.

    Article  PubMed  CAS  Google Scholar 

  3. McNamara, J.O., Byrne, M.C., Dashieff, R.M. and Fitz, J.G., The kindling model of epilepsy: a review. Prog. Neurobiol., 15 (1980) 139–159.

    CAS  Google Scholar 

  4. Moshe, S.L., The ontogeny of seizures and substantia nigra modulation, In P. Kellaway and J.L. Noebels (Eds.), Problems and concepts in developmental neurophysiology, Baltimore, The Johns Hopkins Press, 1989, pp. 247–261.

    Google Scholar 

  5. Moshe, S.L., Sharpless, N.S. and Kaplan, J., Kindling in developing rats: variability of afterdischarge thresholds with age, Brain Res., 211 (1981) 190–195.

    Article  PubMed  CAS  Google Scholar 

  6. Moshe, S.L., Albala, B.J., Ackerman, R.F. and Engel, J., Jr., Increased seizure susceptibility of the immature brain, Dev. Brain Res., 7 (1983) 81–85.

    Article  Google Scholar 

  7. Holmes, G.L., and Thompson, J.L., Rapid kindling in the prepubescent rat, Brain Res., 433 (1987) 381–384.

    Google Scholar 

  8. Haas, K.Z., Sperber, E.F. and Moshe, S.L., Kindling in developing animals: expression of severe seizures and enhanced development of bilateral foci. Dev. Brain Res., 56 (1990) 275–280.

    Article  CAS  Google Scholar 

  9. Racine, R.J., Burnham, W. M. and Gartner, J. G., First trial motor seizures triggered by amygdaloid stimulation in the rat. Electroencephal. Clin. Neurophysiol. 35 (1973) 487–494.

    CAS  Google Scholar 

  10. Gilbert, M.E. and Cain, D.P., A developmental study of kindling in the rat. Dev. Brain Res., 2 (1982) 321–328.

    Google Scholar 

  11. Swann, J.W., Smith, K.L., Gomez, C.M. and Brady, R.J., The ontogeny of hippocampal local circuits and focal epileptogenesis. Epilepsy Res., supp. 9 (1992) 115–125.

    CAS  Google Scholar 

  12. Shinnar, S. and Moshe, S.L. Age specificity of seizure expression in genetic epilepsies. In: Anderson, E.E., Hauser, W.A., Leppik, I.E., Noebels, J.L., Rich, S.S., eds. Genetic Strategies in Epilepsy Research. Elsevier 1991;69–85

    Google Scholar 

  13. Sperber, E.F., Stanton, P.K., Haas, K., Ackerman, R.F. and Moshe, S.L. Developmental differences in the neurobiology of epileptic brain damage in: Mol. Neurobiol. Epilepsy, Elsevier, pp 67–81;1992

    Google Scholar 

  14. Woodbury, D.M. Significance of animal models of epilepsy for evaluation of anti-epileptic drug therapy in children. In: Antiepileptic Drug Therapy in Pediatrics. P.L. Morselli, C.E. Pippinger, J.K. Penry, Eds. Raven Press, New York, 349–362, 1983

    Google Scholar 

  15. Vale, W., Spiess, J., Rivier, C. et al., Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and Beta-endorphin. Science, 213 (1981) 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  16. Sawchenko, P.E., Imaki, T., Potter, E., Kovacs, K., Imaki, J. and Vale, W. The functional neuroanatomy of corticotropin releasing factor. CIBA Foundation Symp. 172:5–21;1993.

    CAS  Google Scholar 

  17. Aldenhoff, J.B., Gruol, D.L., Rivier, J. et al., Corticotropin-releasing factor decreases postburst hyperpolarization and excites hippocampal neurons. Science 221 (1983) 875–877.

    Article  PubMed  CAS  Google Scholar 

  18. Smith, B.N. and Dudek, F.E. Age-related epileptogenic effects of corticotropin releasing hormone in the isolated CAI region of rat hippocampal slices. J. Neurophysiol. 72 (1994) 2328–2333.

    PubMed  CAS  Google Scholar 

  19. Hollrigel, G., Baram, T.Z. and Soltesz, 1. Corticotropin Releasing Hormone decreases inhibitory synaptic transmission in the hippocampus of infant rats Soc. Neurosci. Abst. (submitted)

    Google Scholar 

  20. Ehlers, C.L., CRF effects on EEG activity: Implications for the modulation of normal and abnormal brain states. In E.B. De Souza and C.B. Nemeroff(Eds.), Corticotropin-releasing factor: Basic and Clinical Studies of a Neuropeptide, CRC, Boca Raton, 1990, pp. 233–248.

    Google Scholar 

  21. Weiss, S.R.B., Post, R.M., Gold, P.W., Chrousos, G., et al CRF-induced seizures and behavior: interaction with amygdala kindling Brain Res. 372 (1986) 345–351.

    CAS  Google Scholar 

  22. Fox, E.A. and Gruol, D.L. CRF suppresses the afterhyperpolarization in cerebellar Purkinje neurons Neurosci. Lett., 149 (1993) 103–107.

    CAS  Google Scholar 

  23. Valentino, R.J., Page, M.E. and Curtis, A.L. Activation of noradrenergic locus ceruleus neurons by hemodynamic stress is due to local release of CRF. Brain Res., 555(1991) 25–34

    Article  PubMed  CAS  Google Scholar 

  24. Baram, T.Z. and Schultz, L., CRH is a rapid and potent convulsant in the infant rat, Dev. Brain Res., 61 (1991) 97–101.

    Article  CAS  Google Scholar 

  25. Baram, T.Z., Hirsch, E., Snead, O.C. III and Schultz, L., CRH induced seizures in the infant brain originate in the amygdala. Ann. Neurol., 31 (1992) 488–494.

    Article  PubMed  CAS  Google Scholar 

  26. Baram, T.Z. and Ribak, C.E., Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. NeuroReport 6 (1995) 277–280

    Article  PubMed  CAS  Google Scholar 

  27. Ribak, C.E. and Baram, T.Z. Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH- induced status epilepticus in infant rats. Dev. Brain Res. 91 (1996) 245–251.

    Article  CAS  Google Scholar 

  28. Weiss, G.K., Castillo, N. and Fernandez, M. Amygdala kindling is altered in rats with a deficit in the responsiveness of the HPA axis Neurosci. Lett., 157 (1993) 91–94

    CAS  Google Scholar 

  29. Baram, T.Z., Hirsch, E. and Schultz, L. Short-interval amygdala kindling in neonatal rats. Dev. Brain Res. 73 (1993) 79–83

    Article  CAS  Google Scholar 

  30. Baram, T.Z. and Hirsch, E. EEG recording in neonatal rats: Some pitfalls and solutions. Dendron, 1 (1992) 39–46

    Google Scholar 

  31. Cain, D.P., Raithby, A. and Corcoran, M.E., Urethane anesthesia blocks the development and expression of kindled seizures. Life Sci., 44 (1989) 1201–1206.

    Article  PubMed  CAS  Google Scholar 

  32. Holmes, G.L. and Weber, D.A., Effects of ACTH on seizure susceptibility in the developing brain Ann. Neurol., 20 (1986) 82–88.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, S.S., Murat, R. and Matsuura S., Effects of Hypoglycemia on kindling seizures in suckling rats, Exp. Neurol., 99 (1988) 142–153.

    Article  PubMed  CAS  Google Scholar 

  34. Michelson, H.B. and Lothman, E.W., An ontogenic study of kindling using rapidly recurring hippocampal seizures, Dev. Brain Res., 61 (1991) 79–85.

    Article  CAS  Google Scholar 

  35. Cain, D.P., Plant, J., Rouleau S., Corcoran, M.E., Failure to kindle seizures after repeated intracerebral administration of arginine vasopressin. Life Sci., 38 (1986) 985–989.

    Article  PubMed  CAS  Google Scholar 

  36. Pinel, J.P. and Rovnar, L.I., Electrode placement and kindling-induced experimental epilepsy, Exp. Neurol. 58 (1978) 335–346.

    Article  PubMed  CAS  Google Scholar 

  37. Yi, S.J., Masters, J.N. and Baram, T.Z. Glucocorticoid receptor-mRNA ontogeny in the fetal and postnatal rat brain Mol. Cell. Neurosci. 5 (1994) 385–393.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baram, T.Z., Hirsch, E., Schultz, L. (1998). Short Interval Electrical Amygdala Kindling in Infant Rats. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 5. Advances in Behavioral Biology, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5375-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5375-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7453-4

  • Online ISBN: 978-1-4615-5375-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics