Skip to main content

Neoplastic Progression in Barrett’s Esophagus

  • Chapter
Genomic Instability and Immortality in Cancer

Abstract

In 1976, Nowell hypothesized that cancer develops as a consequence of an acquired genomic instability that predisposes to the development of abnormal clones of cells with accumulated genetic errors (Nowell, 1976). Some clones gain selective proliferative advantages, and eventually a subclone evolves that has acquired the capacity for invasion, becoming an early carcinoma. There is now substantial evidence that human cancers develop in association with a process of genetic instability and clonal evolution that leads to the accumulation of genetic errors (Vogelstein, et al., 1988; Sidransky, et al., 1992; Raskind, et al., 1992; Huang, et al., 1992). However, few human model systems have been developed in which it is possible to investigate the sequence of events that leads to the development of a carcinoma in vivo. Many studies have focused on the genetic abnormalities that are present in advanced carcinomas in surgical specimens. Although the study of advanced cancers is useful for identifying genetic abnormalities that have accumulated in the cancer, the ability of this approach to determine the order in which genetic and other abnormalities develop during earlier stages of neoplastic progression is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, S.J., Preisinger, A.C., Jessup, J.M., Paraskeva, C., Markowitz, S., Willson, J.K.V., Hamilton, S., and Vogel-stein, B. 1990. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 50:7717–7722.

    PubMed  CAS  Google Scholar 

  • Barrett, M.T., Reid, B.J., and Joslyn, G. 1995. Genotypic analysis of multiple loci in somatic cells by whole genome amplification. Nuc. Acids Res. 23:3368–3372.

    Google Scholar 

  • Barrett, M.T., Galipeau, P., Sanchez, C., Emond, M.J., and Reid, B.J. 1996a. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. Oncogene. 12:1873–1878.

    PubMed  CAS  Google Scholar 

  • Barrett, M.T., Sanchez, C.A., Galipeau, P.C., Neshat, K., Emond, M., Reid, B.J. 1996b. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene, in press.

    Google Scholar 

  • Bennett, W.P., Hollstein, M.C., Metcalf, R.A., Welsh, J.A., He, A., Zhu, S., Kusters, I. Resau, J.H., Trump, B.F., Lane, D.P., and Harris, C.C. 1992. p53 mutation and protein accumulation during multistage human esophageal carcinogenesis. Cancer Res. 52:6092–6097.

    PubMed  CAS  Google Scholar 

  • Blot, W.J., Devesa, S.S., Kneller, R.W., and Fraumeni, Jr. J.F. 1991. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA. 265:1287–1289.

    Article  PubMed  CAS  Google Scholar 

  • Blount, P.L., Rabinovitch, P.S., Haggitt, R.C. and Reid, B.J. 1990. Early Barrett’s adenocarcinoma arises within a single aneuploid population. Gastroenterology 98: A273.

    Google Scholar 

  • Blount, P.L., Ramel, S., Raskind, W.H., Haggitt, R.C., Sanchez, C.A., Dean, P.J., Rabinovitch, P.S., and Reid. B.J. 1991. 17p allelic deletions and p53 protein overexpression in Barrett’s adenocarcinoma. Cancer Res. 51:5482–5486.

    PubMed  CAS  Google Scholar 

  • Blount, P.L., Meltzer, S.J., Yin, J., Huang, Y., Krasna, M.J., and Reid, B.J. 1993. Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc. Natl. Acad. Sci. USA. 90:3221–3225.

    Article  PubMed  CAS  Google Scholar 

  • Blount, P.L., Galipeau, P.C., Sanchez, C.A., Neshat, K., Levine, D.S., Yin, J., Suzuki, H., Abraham, J.M., Meltzer, S.J., and Reid, B.J. 1994. 17p allelic losses in diploid cells of patients with Barrett’s esophagus who develop aneuploidy. Cancer Res. 54:2292–2295.

    PubMed  CAS  Google Scholar 

  • Boynton, R.F., Huang, Y., Blount, P.L., Reid, B.J., Raskind, W.H., Haggitt, R.C., Newkirk, C., Resau, J.H., Yin, J., McDaniel, T., and Meltzer, S.J. 1991. Frequent loss of heterozygosity at the retinoblastoma locus in human esophageal cancers. Cancer Res: 51:5766–5769.

    PubMed  CAS  Google Scholar 

  • Boynton, R.F., Blount, P.L., Yin, J., Brown, V.L., Huang, Y., Tong, Y., McDaniel, T., Newkirk, C., Resau, J.H., Raskind, W.H., Haggitt, R.C., Reid, B.J., and Meltzer, S.J. 1992. Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proc. Natl. Acad. Sci. USA. 89:3385–3388.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M., Garvik, B., Hartwell, L., Kadyk, L., Seeley, T., and Weinert, T. 1991. Fidelity of mitotic chromosome transmission. In Cold Spring Harbor Symposia on Quantitative Biology, Vol LVI. pp. 359–365 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Carder, P, Wyllie, A.H., Purdie, C.A., Morris, R.G., White, S., Piris, J., and Bird, C.C. 1993. Stabilised p53 facilitates aneuploid colonal divergence in colorectal cancer. Oncogene. 8:1397–1401.

    PubMed  CAS  Google Scholar 

  • Casson, A.G., Mukhopadhyay, T., Cleary, K.R., Ro, J.Y., Levin, B., and Roth, J.A. 1991. p53 gene mutations in Barrett’s epithelium and esophageal cancer. Cancer Res. 51:4495–4499.

    PubMed  CAS  Google Scholar 

  • Cross, S.M., Sanchez, C.A., Morgan, C.A., Schimke, M.K., Ramel, S., Izerda, R.L., Raskind, W.H., and Reid, B.J. 1995. A p53-dependent mouse spindle checkpoint. Science 267:1353–1356.

    Article  PubMed  CAS  Google Scholar 

  • Dasso, M., and Newport, J.R. 1990. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: Studies in xenopus. Cell 61:811–823.

    Article  PubMed  CAS  Google Scholar 

  • Deng, C., Zhang, P., Harper, J.W., Elledge, S.J., and Leder, P. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  • Enoch, T., and Nurse, P. 1990. Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60:665–673.

    Article  PubMed  CAS  Google Scholar 

  • Fennerty, M.B., Sampliner, R.E., Way, D., Riddell, R., Steinbronn, K., and Garewal, H. 1989. Discordance between flow cytometric abnormalities and dysplasia in Barrett’s esophagus. Gastroenterology 9797:815.

    Google Scholar 

  • Galipeau, P.C., Cowan, D.S., Sanchez, C.A., Barrett, M.T., Emond, M.J., Levine, D.S., Rabinovitch, P.S., and Reid, B.J. 1996. 17p (p53) allelic losses, 4N (G2/tetraploid) populations and progression to aneuploidy in Barrett’s esophagus. Proc. Natl. Acad. Sci. USA. 93:7081–7084.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M.R., Hall, P.A., Nash, J., Ansari, B., Lane, D.P., and Kingsnorth. A.N. 1992. Epithelial proliferation in Barrett’s esophagus by proliferating cell nuclear antigen immunolocalization. Gastroenterology 103:1769–1776.

    PubMed  CAS  Google Scholar 

  • Hamilton, S.R., Smith, R.R.L., and Cameron, J.L. 1988. Prevalence and characteristics of Barrett esophagus in patients with adenocarcinoma of the esophagus or esophagogastric junction. Hum. Pathol. 19:942–948.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., and Elledge, S.J. The p21 cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Harris, C.C. and Hollstein, M. 1993. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 329:1318–1327.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell, L.H., and Weinert, T.A. 1989. Checkpoints: Controls that ensure the order of cell cycle events. Science 246:629–634.

    Article  PubMed  CAS  Google Scholar 

  • Herbst, J.J., Berenson, M. M., McCloskey, D. W., and Wiser, W. C. 1978. Cell proliferation in esophageal columnar epithelium (Barrett’s esophagus). Gastroenterology 75:683–687.

    PubMed  CAS  Google Scholar 

  • Hereford, L.M. and Hartwell, L.H. 1974. Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. J. Mol. Biol. 84:445–461.

    Article  PubMed  CAS  Google Scholar 

  • Hirohashi, S., and Sugimura, T. 1991. Genetic alterations in human gastric cancer. Cancer Cells 3: 49–52.

    PubMed  CAS  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. 1991. p53 mutations in human cancers. Science 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Boynton, R.F., Blount, P.L., Silverstein, R.J., Yin, J., Tong, Y., McDaniel, T.K., Newkirk, C., Resau, J.H., Sridhara, R., Reid, B.J., and Meltzer, S.J. 1992. Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res. 52:6525–6530.

    PubMed  CAS  Google Scholar 

  • Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R.W. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311.

    PubMed  CAS  Google Scholar 

  • Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B., and Fornace, A.J. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia-Telangiectasia. Cell 71:587–597.

    Article  PubMed  CAS  Google Scholar 

  • Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V., and Kastan, M.B. 1992. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA. 89:7491–7495.

    Article  PubMed  CAS  Google Scholar 

  • Levine, D.S., and Reid, B.J. 1992. Endoscopic diagnosis of esophageal neoplasms. Sivak, M., (eds). In Gastrointestinal endoscopy clinics of North America (eds. M. Sivak, H.W. Boyce and G.A. Boyce) pp. 395–413. W.B. Saunders, Philadelphia.

    Google Scholar 

  • Levine, D.S., Haggitt, R.C., Blount, P.L., Rabinovitch, P.S., Rusch, V.W., and Reid, B.J. 1993. An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett’s esophagus. Gastroenterology 105:40–50.

    PubMed  CAS  Google Scholar 

  • Livingstone, L.R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T.D. 1992. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–936.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X., and Lane, D.P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: Defects in chromosome instability syndromes? 1993. Cell 75:765–778.

    Article  PubMed  CAS  Google Scholar 

  • McKinley, M.J., Budman, D.R., Grueneberg, D., Bronzo, R.L., Weissman, G.S., and Kahn, E. 1987. DNA content in Barrett’s esophagus and esophageal malignancy. Am J Gastroenterology 82: 1012–1015.

    CAS  Google Scholar 

  • Miller, B.A., Ries, L.A.G., Hankey, B.F., Kosary, C.L., and Edwards, B.K. Cancer Statistics Review, 1973–1989. U.S. Department of Health and Human Services. NIH Publication No 92-2789.

    Google Scholar 

  • Muller, J.M., Erasmi, H., Stelzner, M., Zieren, U., and Pichlmaier, H. 1990. Surgical therapy of oesophageal carcinoma. Br. J. Surg. 77:845–857.

    Article  PubMed  CAS  Google Scholar 

  • Neshat, K., Sanchez, C.A., Galipeau, P.C., Blount, P.L., Levine, D.S., Joslyn, G., and Reid, B.J. 1994. p53 mutations in Barrett’s adenocarcinoma and high-grade dysplasia. Gastroenterology 106:1589–1595.

    PubMed  CAS  Google Scholar 

  • Neshat, K., Sanchez, C.A., Galipeau, P.C., Cowan, D.S., Ramel, S., Levine, D.S., and Reid, B.J. 1995. Barrett’s esophagus: a model of human neoplastic progression. IN: Symposium LIX: Molecular Genetics of Cancer. Cold Spring Harbor Sym. on Quant. Biol. LIX:577–583.

    Google Scholar 

  • Nowell, P.C. 1976. The clonal evolution of tumor cell populations. Science 194:23–28.

    Article  PubMed  CAS  Google Scholar 

  • Offerhaus, G.J.A., De Geyter, E.P., Cornelisse, C.J., Tersmette, K.W.F., Floyd, J., Kern, S.E., Vogelstein, B., and Hamilton, S.R. 1992. The relationship of DNA aneuploidy to molecular genetic alterations in colorectal carcinoma. American Gastroenterological Assoc. 102:1612–1619.

    CAS  Google Scholar 

  • Peiffer, S.L., Herzog, T.J., Tribune, D.J., Mutch, D.G., Gersell, D.J., and Goodfellow, P.J. 1995. Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 55:1922–1926.

    PubMed  CAS  Google Scholar 

  • Pellish, L.J., Hermos, J.A., and Eastwood, G.L. 1980. Cell proliferation in three types of Barrett’s epithelium. Gut 21:26–31.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, R.W., and Wong, R.K.H. 1991. Barrett’s esophagus: Natural history, incidence, etiology and complications. Gastroenterol Clin North Am. 20:791–816.

    PubMed  CAS  Google Scholar 

  • Rabinovitch, P.S., Reid, B.J., Haggitt, R.C., Norwood, T.H., and Rubin, C.E. 1988. Progression to cancer in Barrett’s esophagus is associated with genomic instability. Lab Invest. 60:65–71.

    Google Scholar 

  • Ramel, S., Reid, B.J., Sanchez, C.A., Blount, P.L., Levine, D.S., Neshat, K., Haggitt, R.C., Dean, P.J., Thor, K., and Rabinovitch, P.S. 1992. Evaluation of p53 protein expression in Barrett’s esophagus by two-parameter flow cytometry. Gastroenterology 102:1220–1228.

    PubMed  CAS  Google Scholar 

  • Raskind, W.H., Norwood, T., Levine, D.S., Haggitt, R.C., Rabinovitch, P.S., and Reid, B.J. 1992. Persistent clonal areas and clonal expansion in Barrett’s esophagus. Cancer Res. 52:2946–2950.

    PubMed  CAS  Google Scholar 

  • Reid, B.J., Haggitt, R.C., Rubin, C.E., and Rabinovitch, P.S. 1987. Barrett’s esophagus: Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology 93:1–11.

    PubMed  CAS  Google Scholar 

  • Reid, B.J., Weinstein, W.M., Lewin, K.J., Haggitt, R.C., Van Deventer, G., DenBesten, L., and Rubin, C.E. 1988a. Endoscopic biopsy can detect high-grade dysplasia or early adenocarcinoma in Barrett’s esophagus without grossly recognizable neoplastic lesions. Gastroenterology 94:81–94.

    PubMed  CAS  Google Scholar 

  • Reid, B.J., Haggitt, R.C., Rubin, C.E., Roth, G., Surawicz, C.M., VanBelle, G., Lewin, K., Weinstein, W.M., An-tonioli, D.A., Goldman, H., MacDonald, W., and Owen, D. 1988b. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol. 19:166–178.

    Article  PubMed  CAS  Google Scholar 

  • Reid, B.J. 1991. Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am. 20:817–834.

    PubMed  CAS  Google Scholar 

  • Reid, B.J., Blount, P.L., Rubin, C.E., Levine, D.S., Haggitt, R.C., and Rabinovitch, P.S. 1992. Flow cytometric and histologic progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology 102:1212–1219.

    PubMed  CAS  Google Scholar 

  • Reid, B.J., Sanchez, C.A., Blount, P.L., and Levine, D.S. 1993. Barrett’s esophagus: Cell cycle abnormalities in advancing stages of neoplastic progress. Gastroenterology 105:119–129.

    PubMed  CAS  Google Scholar 

  • Robaszkiewicz, M., Hardy, E., Volant, A., Nousbaum, J.B., Cauvin, J.M., Calament, G., Robert, F.X., Saleun, J.P., and Gouerou, H. 1991. Analyse du contenu cellulaire en ADN par cytometric en flux dans les endo-brachyoesophages. Gastroenterol Clin Biol. 15:703–710.

    PubMed  CAS  Google Scholar 

  • Sandell, L.L., and Zakian, V.A. 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., Tanigami, A., Yamakawa, K., Akiyama, F., Kasumi, F., Sakamoto, G., and Nakamura, Y. 1990. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res., 50:7184–7189.

    PubMed  CAS  Google Scholar 

  • Sidransky, D., Mikkelsen, T., Schwechheimer, K., Rosenblum, M.L., Cavanee, W., and Vogelstein, B. 1992. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355:846–847.

    Article  PubMed  CAS  Google Scholar 

  • Sozzi, G., Miozzo, M., Donghi, R., Pilotti, S., Cariani, C.T., Pastorino, U., Della Porta, G., and Pierotti, M.A. 1992. Deletions of 17p and p53 mutations in preneoplastic lesions of the lung. Cancer Res. 52:6079–6082.

    PubMed  CAS  Google Scholar 

  • Spechler, S.J. 1987. Endoscopic surveillance for patients with Barrett esophagus: Does the cancer risk justify the practice? Ann Int Med. 106:902–904.

    PubMed  CAS  Google Scholar 

  • Thrash-Bingham, C.A., Greenberg, R.E., Howard, S., Bruzel, A., Bremer, M., Goll, A., Salazar, H., Freed, J.J., and Tartof, K.D. 1995. Comprehensive allelotyping of human renal cell carcinomas using microsatellite DNA probes. Proc. Natl. Acad. Sci. USA. 92:2854–2858.

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E., Preisinger, A.C., Leppert, M., Nakamura, Y., White, R., Smits, A.M.M., and Bos, J.L. 1988. Genetic alterations during colorectal tumor development. N Eng J Med. 319:525–532.

    Article  CAS  Google Scholar 

  • Vogelstein, B., Fearon, E.R., Kern, S.E., Hamilton, S.R., Preisinger, A.C., Nakamura, Y., and White, R. 1989. Allelotype of colocrectal carcinomas. Science, 244:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Weinert, T.A., and Hartwell, L.H. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Sac-charomyces cerevisiae. Science 241:317–322.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D. 1993. p21 is a universal inhibitor of cyclin kinases. Nature (Lond.), 366:701–704.

    Article  CAS  Google Scholar 

  • Yamaguchi, T., Toguchida, J., Yamamuro, T., Kotoura, Y., Takada, N., Kawaguchi, N., Kaneko, Y., Nakamura, Y., Sasaki, M.S., and Ishizaki, K. 1992. Allelotype analysis in osteosarcomas: frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res., 52:2419–2423.

    PubMed  CAS  Google Scholar 

  • Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C., and Wahl, G.M. 1992. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948.

    Article  PubMed  CAS  Google Scholar 

  • Younes, M., Lebovitz, R.M., Lechago, L.V., and Lechago, J. 1993. p53 protein accumulation in Barrett’s metaplasia, dysplasia, and carcinoma: A follow-up study. Gastroenterology 105:1637–1642.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barrett, M.T. et al. (1997). Neoplastic Progression in Barrett’s Esophagus. In: Mihich, E., Hartwell, L. (eds) Genomic Instability and Immortality in Cancer. Pezcoller Foundation Symposia, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5365-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5365-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7448-0

  • Online ISBN: 978-1-4615-5365-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics