Skip to main content

Surface-Chemical Pathways of the Tear Film Breakup

Does Corneal Mucus Have a Role?

  • Chapter
Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 438))

Abstract

Numerous experimental1–6 and theoretical3–8 studies have conclusively demonstrated that relatively thick (< 100 µm) fluid films on nonwettable substrates dewet spontaneously by the nucleation and growth of initial defects or dry spots. As expected, the thinner films on the less wettable substrates are more unstable. Interestingly, the theory also shows that the tear film breakup can be initiated by even an extremely small, mildly nonwettable corneal site of dimensions comparable to the size of a single superficial squamous cell.9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paddy JE. Cohesive properties of thin films on liquids adhering to a solid surface. Spec Disc Faraday Soc. 1970; 1: 64–74.

    Article  Google Scholar 

  2. Doughman DJ, Holly FJ, Dohlman CH. Paper presented at the ARVO Meeting, 1971.

    Google Scholar 

  3. Taylor GI, Michael, DH. On making holes in a sheet of fluid. J Fluid Mech 1973; 58: 625–639.

    Article  Google Scholar 

  4. Khesgi HS, Scriven LE. Dewetting: Nucleation and growth of dry regions. Chem Eng Sci 1991; 46: 5: 519–525.

    Google Scholar 

  5. Redon C, Brochard-Wyart F, Rondelez E Dynamics of dewetting. Phys Rev Lett 1991; 66: 715–718.

    Article  PubMed  CAS  Google Scholar 

  6. Sykes C, Andrieu C, Detappe V, Deniau S. Critical radius of holes in liquid coating. J Phys III (France) 1994; 4: 775–781.

    Article  CAS  Google Scholar 

  7. de Gennes P G. Wetting: Statics and dynamics. Rev Mod Phys. 1985; 57: 827–863.

    Article  Google Scholar 

  8. Sharma A. Perturbation analysis of surface dewetting by formation of holes. J Colloid Interface Sci. 1993; 156: 96–103.

    Article  CAS  Google Scholar 

  9. Sharma A, Coles WH. Physico-chemical factors in tear film breakup. Invest Ophthalmol Vis Sci. 1990; 31S: 552.

    Google Scholar 

  10. Holly FJ, Lemp MA. Wettability and wetting of corneal epithelium. Exp Eye Res.11: 239–250, 1971.

    Article  Google Scholar 

  11. Holly FJ, Lemp MA. Formation and rupture of tear film. Exp Eye Res. 1973; 15: 515–525.

    Article  PubMed  CAS  Google Scholar 

  12. Holly FJ. Wettability and bioadhesion in ophthalmology. In: Schrader ME, Loeb G, eds. Modern Approaches to Wettability: Theory and Applications. Plenum Press; 1992: 213–248.

    Google Scholar 

  13. Cope C, Dilly PN, Kaura R, Tiffany JM. Wettability of the corneal surface: A reappraisal. Curr Eye Res. 1986; 5: 777–785.

    Article  PubMed  CAS  Google Scholar 

  14. Tiffany JM. Measurements of wettability of the corneal epithelium: I particle attachment method. Acta Ophthalmol. 1990; 68: 175–181.

    CAS  Google Scholar 

  15. Tiffany JM. Measurements of wettability of the corneal epithelium: II contact angle method.Acta Ophthalmol. 1990; 68: 182–187.

    Article  CAS  Google Scholar 

  16. Sharma A. Surface properties of damaged and normal corneal epithelia. J Dispersion Sci Tech. 1992; 13: 459–478.

    Article  CAS  Google Scholar 

  17. Sharma A. Energetics of corneal epithleial cell-ocular mucus-tear film interactions. Biophys Chem. 1993; 47: 87–99.

    Article  PubMed  CAS  Google Scholar 

  18. van Oss CJ. Energetics of cell-cell and cell-biopolymer interactions. Cell Biophys. 1989; 14: 1–16.

    PubMed  Google Scholar 

  19. van Oss CJ, Chaudhury MK, Good RJ. Monopolar surfaces. Adv Colloid Interface Sci. 1987; 28: 35–65.

    Article  PubMed  Google Scholar 

  20. van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev. 1988;88:927–941; and refetences therein.

    Google Scholar 

  21. van Oss CJ. Acid-bse interfacial interactions in aqueous media. Colloids Surf A. 1993;78:1–49; and references therein.

    Article  Google Scholar 

  22. Bhattacharjee S, Sharma A, Bhattacharya PK. Surface interactions in osmotic pressure controlled flux decline during ultrafiltration. Langmuir. 1994; 10: 4710–4720.

    Article  CAS  Google Scholar 

  23. O’Leary DJ, Wilson G. Tear side regulation of desquamation in the rabbit corneal epithelium. Clin Exp Optom. 1961; 69: 22–26.

    Article  Google Scholar 

  24. Sharma A, Coles WH. Kinetics of corneal epithelial maintenance and graft loss: A population balance model. Invest Ophthalmol Vis Sci. 1989; 30: 1962–1970.

    PubMed  CAS  Google Scholar 

  25. Dilly PN. Corneal of the epithelium to the stability of the tear film. Trans Ophthalmol Soc UK. 1985; 104: 381–389.

    PubMed  Google Scholar 

  26. Liotet S, van Bijsterveld OP, Kogbe O, and Laroche L. A new hypothesis on tear film stability. Ophthalmologica (Basel). 1987; 195: 119–124.

    Article  CAS  Google Scholar 

  27. Lemp MA, Gold JB, Wong S, Mahmood M, Guimaraes R. An in vivo study of corneal surface morphologic features in patients with keratoconjunctivitis sicca. Am JOphthalmol. 1981; 98: 426–428.

    Article  Google Scholar 

  28. Bron AJ, and Mengher LS. The ocular surface in keratoconjunctivitis sicca. Eye 1989; 3: 428–437.

    Article  PubMed  Google Scholar 

  29. Nom MS, Opauszki A. Effects of ophthalmic vehicles on the stability of the precorneal tear film. Acta Ophthalmol. 1977; 55: 23–34.

    Google Scholar 

  30. Burstein NL. Corneal cytotoxicity of topically applied drugs vehicles and preservatives. Sury Ophthalmol. 1980; 25: 15–30.

    Article  CAS  Google Scholar 

  31. Sharma A, Ruckenstein E. The role of lipid abnormalities, aqueous and mucus deficiencies in the tear film breakup and implications for tear substitutes and contact lens tolerance. J Colloid Interface Sci. 1986; 111: 8–21.

    Article  CAS  Google Scholar 

  32. Ruckenstein E, and Sharma A. A surface chemical explanation of tear film breakup and its implications. In: Holly FJ, Lamberts DW, Mackeen DL, eds. Dry Eye Institute; Lubbock, TX: The Preocular Tear Film: In Health, Disease and Contact Lens Wear. 1986: 697–727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, A. (1998). Surface-Chemical Pathways of the Tear Film Breakup. In: Sullivan, D.A., Dartt, D.A., Meneray, M.A. (eds) Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Advances in Experimental Medicine and Biology, vol 438. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5359-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5359-5_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7445-9

  • Online ISBN: 978-1-4615-5359-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics