Skip to main content

Viral Particles with Heterologous Binding Motifs

An Approach to Specifically Alter the Tropism of the B-Lymphotropic Papovavirus

  • Chapter
Gene Therapy of Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 451))

Abstract

There are two general requirements to be met by a viral vector. One is the ability to carry and deliver a stretch of heterologous DNA and a second is a distinct host cell tropism, providing that only a desired population of target cells is infected. The B-lymphot-ropic papovavirus (LPV), with its extremely narrow, receptor-mediated host range, may be the basis for a tissue specific viral vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DNA:

Desoxyribonucleic acid

LPV:

B-lymphotropic papovavirus

SV40:

Simian virus 40

Py:

Murine Polyomavirus

VP1/2/3:

Viral protein 1/2/3

VLP:

Viruslike particles

RGD:

Arginine glycine aspartic acid

ORF:

Open reading frame

AcNPV:

Autographa californica nuclear polyhedrosis virus

Sf 9:

Cell line established from the insect Spodoptera frugiperda

IgG:

Immunoglobulin G; FITC: Fluoresceinisothiocyanate

TRITC:

Tertamethyl-rhodamin-isothiocyanat

PBS:

Phosphate buffered saline

3-D:

Three-dimensional

T:

Threonine

D:

Aspartic acid

K:

Lysine

G:

Glycine

FMDV:

Foot and mouth disease virus

CAV-9:

Coxsackie virus serotype A9

References

  1. H zur Hausen, L Gissmann, A Mincheva, et al, 1980: Characterization of a lymphotropic papovavirus. In: M Essex, G Todaro, H zur Hausen, editors. Viruses in naturally occuring cancers. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 365–373.

    Google Scholar 

  2. M Pawlita, A Clad, H zur Hausen, 1985: Complete DNA sequence of lymphotropic papovavirus: prototype of a new species of the Polyomavirus genus. Virology 143, 196–211.

    Article  PubMed  CAS  Google Scholar 

  3. M Pawlita, M Müller, M Oppenländer, H Zentgraf, M Herrmann, 1996: DNA encapsidation by viruslike particles assembled in insect cells from the major capsid protein VP1 of B-lymphotropic papovavirus. J Virol 70, 7517–7526.

    PubMed  CAS  Google Scholar 

  4. G Haun, OT Keppler, CT Bock, M Herrmann, H Zentgraf, M Pawlita, 1993: The Cell Surface Receptor Is a Major Determinant Restricting the Host Range of the B-Lymphotropic Papovavirus. J Virol 67, 7482–7492.

    PubMed  CAS  Google Scholar 

  5. M Herrmann, M Oppenländer, M Pawlita, 1995: Fast and high-affinity binding of B-lymphotropic papovavirus to human B-lymphoma cell lines. J Virol 69, 6797–6804.

    PubMed  CAS  Google Scholar 

  6. RO Hynes, 1992: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.

    Article  PubMed  CAS  Google Scholar 

  7. T Stehle, SC Harrison, 1996: Crystal structures of murine Polyomavirus in complex with straight- chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4, 183–194.

    Article  PubMed  CAS  Google Scholar 

  8. DG Higgins, PM Sharp, 1989: Clustal. Cabios 5, 151–153.

    CAS  Google Scholar 

  9. MC Peitsch, 1995: Protein modeling by E-mail. Biotechnology 13, 658–660.

    Article  CAS  Google Scholar 

  10. T Stehle, SJ Gamblin, Y Yan, SC Harrison, 1996: The structure of simian virus 40 refined at 3.1 A resolution. Structure 4, 165–182.

    Article  PubMed  CAS  Google Scholar 

  11. RC Liddington, Y Yan, J Moulai, R Sahli, TL Benjamin, SC Harrison, 1991: Structure of simian virus 40 at 3.8-A resolution. Nature 354, 278–284.

    Article  PubMed  CAS  Google Scholar 

  12. T Stehle, YW Yan, TL Benjamin, SC Harrison, 1994: Structure of murine Polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163.

    Article  PubMed  CAS  Google Scholar 

  13. KM Yamada, 1991: Adhesive recognition sequences. J Biol Chem 266, 12809–12812.

    PubMed  CAS  Google Scholar 

  14. E Ruoslahti, MD Pierschbacher, 1987: New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497.

    Article  PubMed  CAS  Google Scholar 

  15. AL Main, TS Harvey, M Baron, J Boyd, ID Campbell, 1992: The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71, 671–678.

    Article  PubMed  CAS  Google Scholar 

  16. DJ Leahy, WA Hendrickson, I Aukhil, HP Erickson, 1992: Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987–991.

    Article  PubMed  CAS  Google Scholar 

  17. M Adler, RA Lazarus, MS Dennis, G Wagner, 1991: Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 253, 445–448.

    Article  PubMed  CAS  Google Scholar 

  18. RA Atkinson, V Saudek, JT Pelton, 1994: Echistatin: the refined structure of a disintegrin in solution by 1H NMR and restrained molecular dynamics. Int J Pept Protein Res 43, 563–572.

    Article  PubMed  CAS  Google Scholar 

  19. AM Krezel, G Wagner, J Seymour-Ulmer, RA Lazarus, 1994: Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. Science 264, 1944–1947.

    Article  PubMed  CAS  Google Scholar 

  20. M Roivainen, T Hyypia, L Piirainen, N Kalkkinen, G Stanway, T Hovi, 1991: RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J Virol 65, 4735–4740.

    PubMed  CAS  Google Scholar 

  21. PW Mason, E Rieder, B Baxt, 1994: RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A 91, 1932–1936.

    Article  PubMed  CAS  Google Scholar 

  22. P Mathias, T Wickham, M Moore, G Nemerow, 1994: Multiple adenovirus serotypes use alpha v integrins for infection. J Virol 68, 6811–6814.

    PubMed  CAS  Google Scholar 

  23. TJ Wickham, P Mathias, DA Cheresh, GR Nemerow, 1993: Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Langner, J., Zentgraf, H., Pawlita, M. (1998). Viral Particles with Heterologous Binding Motifs. In: Walden, P., Trefzer, U., Sterry, W., Farzaneh, F., Zambon, P. (eds) Gene Therapy of Cancer. Advances in Experimental Medicine and Biology, vol 451. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5357-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5357-1_64

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7444-2

  • Online ISBN: 978-1-4615-5357-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics