Skip to main content

Treatment of Hepatocellular Carcinoma with the Cellular Tumor Vaccines Generated by in Vitro Modification of Tumor Cells with Non Gene Transfer Approaches

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 451))

Abstract

Anti-tumor immune responses are mediated primarily by T cells. Down regulation of major histocompatiblity complex (MHC) and the molecules that costimulate the immune responses is associated with defective signaling of tumor cells for T cell activation. In vitro fusion of autologous tumor cells with antigen presenting cells (APCs) or treatment of tumor cells with a combination of cytokines significantly increased the expression of MHC class I and adhesion molecules on tumor cell surfaces that costimulate host immune responses. The hybrid cells generated by fusion of tumor cells with APCs and the tumor cells treated in vitro with a combination of cytokines and pre-incubated with a bispecific monoclonal antibody (bi-Mab) cross-linking antigen on tumor cells to CD28 on T cells, become immunogenic and able to stimulate naive T cells with generation of tumor specific cytotoxic T cells both in vitro and in vivo. Immunization with the modified tumor cells elicits an immune response mediated by both CD4+ and CD8+ T cells. This response protected against a parental tumor cell challenge and cured established tumors. The approach was effective in both low immunogenic and non-immunogenic tumor systems. Modification of tumor cells with tumor:APC fusion or the two-step procedure may provide a strategy for development of tumor vaccines that is effective for cancer immunotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Restifo, N.P. and Wunderlich, J.R. Biology of cellular Immune responses. Biological Therapy of Cancer. 2nd edition, DeVita, V.T. Jr, Hellman, S. and Rosenberg, S.A. Editors. J.B. Lippincott Co., Philadelphia, Chapter 1, 3–37 (1995).

    Google Scholar 

  2. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecule CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. June, C.H., Bluestone, J.A., Nadler, L.M. and Thompsom, C.B. The B7 and CD28 receptor families. Immunol. Today. 15, 321–331 (1994).

    CAS  Google Scholar 

  4. Townsend, S.E. and Allison, J.R Tumor rejection after direct costimulation of CD8+ T cells by B7 transfected melanoma cells. Science 259, 368–370 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. Allison, J.P. CD28-B7 interactions in T cell activation. Curr. Opin. Immunol. 6, 414–419 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz, R.H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065–1068 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. and Allison, J.P. CD28-mediated signaling costimulates murine T cells and prevent induction of anergy in T cell clones. Nature 356, 607–609 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. Yang, G., Hellström, K.E., Hellström, I. and Chen, L. Antitumor immunity elicited by tumor cells transfected with B7–2, a second ligand for CD28/CTLA-4 costimulatory molecules. J. Immunol. 154, 2794–2800 (1995).

    PubMed  CAS  Google Scholar 

  9. Marincola, F.M. et al. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J. Immunol. 153, 1225–1237 (1994).

    PubMed  CAS  Google Scholar 

  10. Luboldt, H., Britta, S.K., Rubben, H. and Grosse-Wilde, H. Selective loss of human leukocyte antigen class I allele expression in advanced renal cell carcinoma. Cancer Res. 56, 826–830 (1996).

    PubMed  CAS  Google Scholar 

  11. Wallich, R., Bulbuc, N., Hammerling, G.J., Katzav, S., Segal, S. and Feldman, M. Abrogation of metastatic properties of tumor by de novo expression of H-2K antigens following H-2 gene transfection. Nature 315, 301–305 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. Li, Y., Hellström K.E., Newby, S.A. and Chen, L.P. Costimulation by CD48 and B7-1 induces immunity against poorly immunogenic tumors. J. Exp. Med. 183, 639–644 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Yang, G., Helloström, K.E., Mizuno, M.T. and Chen, L. In vitro priming of tumor-reactive cytolytic T lymphocytes by combining IL-10 with B7-CD28 costimulation. J. Immunol. 155, 3897–3903 (1995).

    PubMed  CAS  Google Scholar 

  14. Berman, R.M. et al. Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J. Immunol. 157, 231–238 (1996).

    PubMed  CAS  Google Scholar 

  15. Walunas, T.L., Lenschow, D.L., Bakker, C.Y., Linsley, P., Freeman, G.J., Green, J.M., Thompson, C.B. and Bluestone, J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. Krummel, M.F. and Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. Walunas, T.L., Bakker, C.Y. and Bluestone, J.A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. Tivol, E.A., Bordello, F., Schweitzer, A.N., Lynch, W.P., Bluestone, J.A. and Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3, 541–547(1995).

    Article  Google Scholar 

  19. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. Leach, D.R., Krummel, M.K. and Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736(1996).

    Article  PubMed  Google Scholar 

  21. Guo, Y.J. et al. Effective vaccine generated by fusion of hepatoma cells with B cells. Science 263, 518–520 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. Grabbe, S., Beissert, S., Schwarz, T and Granstein, R.D. Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy. Immunol. Today 16, 117–121 (1995).

    CAS  Google Scholar 

  23. Renner, C. et al. Cure of xenografted human tumors by bispecific monoclonal antibodies and human tumor cells. Science 264, 833–835 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. Kroesen, J., Bakker, A., Van Lier, R.A.W., The, H.T. and Leij, L.D. Bispecifc antibody-mediated target cell specific costimulation of resting T cells. Cancer Res. 55, 4409–4415 (1995).

    PubMed  CAS  Google Scholar 

  25. Darlington, G.J., Bernhard, H.P., Miller, R.A. and Ruddle, F.H. Expression of liver phenotypes in cultured mouse hepatoma cells. J. Natl. Cancer Inst. 64, 809 (1980).

    PubMed  CAS  Google Scholar 

  26. MacLean, J.A., Su, Z.L., Guo, Y.J., Sy, M.S., Colvin, R.B and Wong, J.T. Anti- CD3:Anti-IL-2 receptor bispecific monoclonal antibody targeting of activated T cells in vitro. J. Immunol. 150, 1619–1628 (1993).

    PubMed  CAS  Google Scholar 

  27. Huang, A.Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D. and Levitzky, H. Role of bone marrow-derived cells in presenting MHC class I restricted tumor antigen. Science 264, 961–965 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. 2, 52–58 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. Guo, Y.J. et al. Inhibition of human melanoma growth and metastasis in vitro by anti-CD44 monoclonal antibody. Cancer Res. 54, 1561–1565 (1994).

    PubMed  CAS  Google Scholar 

  30. Takahashi, H., Nakada, T. and Puisieux, I. Inhibition of human colon cancer growth by antibody-directed human LAK cells in scid mice. Science 259, 1460–1463 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, S. et al. (1998). Treatment of Hepatocellular Carcinoma with the Cellular Tumor Vaccines Generated by in Vitro Modification of Tumor Cells with Non Gene Transfer Approaches. In: Walden, P., Trefzer, U., Sterry, W., Farzaneh, F., Zambon, P. (eds) Gene Therapy of Cancer. Advances in Experimental Medicine and Biology, vol 451. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5357-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5357-1_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7444-2

  • Online ISBN: 978-1-4615-5357-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics