Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 452))

Abstract

γδ T cells are present in every epithelial tissue tested. Several features of the ontogeny, tissue tropism, and antigen receptor diversity of the epithelial γδ T cells are distinct from lymphoid γδ and αβ T cells(1), γδ T cells are the first T cells which appear during ontogeny in the thymus. Vγ and Vδ gene segments of the T cell antigen receptor (TCR) are rearranged and expressed sequentially according to location on the chromosome. In the adult mouse, there is localization of specific V region expressing subsets of γδ T cells to distinct tissue sites. This V region tissue tropism is conserved in all mouse strains tested. In humans, there is also preferential expression of specific Vγ and Vδ regions in tissue and lymphoid locations. αβ TCR are quite diverse with random pairing of V gene segments and extensive addition of non-germline encoded nucleotides at recombination junctions. In contrast, there is biased pairing of Vγ and Vγ segments with decreased or absent junctional diversity. Indeed the populations of γδ T cells present in murine skin and vaginal epithelium express monoclonal TCR only found in those tissues. These results suggest that γδ T cells may be capable of recognizing a much more limited repertoire of antigens than the αβ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison JP, Havran WL: The immunobiology of T cells with invariant γδ antigen receptors. Ann. Rev. Immunol. 9:679–705, 1991.

    Article  CAS  Google Scholar 

  2. Boismenu R, Havran WL: An innate view of γδ T cells. Curr Opin Immunol 9:57–63, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Janeway CA: Approaching the asymptote? Evolution and revolution in immunology. Cold. Spring. Harb. Symp. Quant. Biol. 54:1–13, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Pearson AM: Scavenger receptors in innate immunity. Curr. Opin. Immunol. 8:20–28, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Boismenu R, Havran WL: γδ T cells in host defense and epithelial cell biology. Clin. Immunol Immu-nopath 86, 1998.

    Google Scholar 

  6. Mombaerts P, Arnoldi J, Russ F, Tonegawa S, Kaufmann SHE: Different roles of αβ and γδ T cells in immunity against an intracellular pathogen. Nature 365:53–56, 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H: Differential production of inter-feron-γ and interleukin-4 in response to Th1-and Th2-stimulating pathogens by γδ T cells in vivo. Nature 373:255–257, 1995.

    Article  PubMed  CAS  Google Scholar 

  8. Haas W, Pereira P, Tonegawa S: Gamma/delta cells. Annu.Rev.Immunol. 11:637–685, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Havran WL, Boismenu R: Activation and function of γδ T cells. Curent Opinion in Immunology 6:442–446, 1994.

    Article  CAS  Google Scholar 

  10. Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, Bluestone JA, Matis L, Draper RK, Chien Y-H: The nature of major histocompatibility complex recognition by γδ T cells. Cell 76:29–37, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Havran WL, Chien Y-H, Allison JP: Recognition of self antigens by skin-derived T cells with invariant γδ receptors. Science 252:1430–1432, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Maeurer MJ, Martin D, Walter W, Liu K, Zitvogel L, Halusczcak K, Rabinowich H, Duquesnoy R, Storkus W, Lotze M: Human intestinal Vδ1+ T lymphocytes recognize tumor cells of epithelial origin. J. Exp. Med. 183:1681–1696, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Heyborne K, Fu Y, Nelson A, Farr A, O’Brien R, Born W: Recognition of trophoblasts by γδ T cells. J. Immunol. 153:2918–2926, 1994.

    PubMed  CAS  Google Scholar 

  14. O’Brien RL, Born W: Heat shock proteins as antigens for γδ T cells. Semin. Immunol. 3:81–87, 1991.

    PubMed  Google Scholar 

  15. Constant P, Davodeau F, Peyrat M-A, Poquet Y, Puzo G, Bonneville M, Fournie J-J: Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264:267–270, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, Brenner MB, Bloom BR, Morita CT: Non-peptide ligands for human γδ T cells. Proc. Natl. Acad. Sci. USA 91:8175–8179, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka Y, Morita CT, Nieves E, Brenner MB, Bloom BR: Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375:155–158, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, Golan DE, Brenner MB: Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3:495–507, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Lang F, Peyrat MA, Constant P, Davodeau F, David-Ameline J, Poquet Y, Vie H, Fournie JJ, Bonneville M: Early activation of human Vγ9Vδ2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J. Immunol. 154:5986–5994, 1995.

    PubMed  CAS  Google Scholar 

  20. Huber H, Descossy P, van Brandwijk R, Knop J: Activation of murine epidermal TCR-γδ+ T cells by kerati-nocytes treated with contact sensitizers. J. Immuonol. 155:2888–2894, 1995.

    CAS  Google Scholar 

  21. Correa I, Bix M, Liao N-S, Zijlstra M, Jaenisch R, Raulet D: T cells bearing γδ T cell receptors develop normally in β2-microglobulin-mutant mice. Cell, 1991.

    Google Scholar 

  22. Cosgrove D, Gray D, Dierich A, Kaufman J, Lemeur M, Benoist C, Mathis D: Mice lacking MHC Class II molecules. Cell 66:1051–1066, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Tigelaar RE, Lewis JM: Immunobiology of mouse dendritic epidermal T cells: A decade later, some answers, but still more questions. J. Invest. Dermatol. 105:43S–49S, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Boismenu R, Hobbs MV, Boullier S, Havran WL: Molecular and cellular biology of dendritic epidermal T cells. Sem. Immunol., 1997.

    Google Scholar 

  25. Rotzschke O, Falk K, Deres K, Schild H, Nords M, Metzger J, Jung G, Rammensee H-G: Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 347:252–254, 1990.

    Article  Google Scholar 

  26. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG: Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Boismenu R, Havran WL: Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266:1253–1255, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA: Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc.Natl.Acad.Sci.USA. 86:802–806, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Basilico C, Moscatelli D: The FGF family of growth factors and oncogenes. Advances in Cancer Research 59:115–165, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Finch PW, Rubin JS, Miki T, Ron D, Aaronson SA: Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245:752–755, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Werner S, Peters KG, Longaker MT, Pace FF, Banda MJ, Williams LT: Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc. Natl. Acad. Sci. USA 89:6896–6900, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Staiano-Coico L, Krueger JG, Rubin JS, D’limi S, Vallat VP, Valentino L, Fahey T, Hawes A, Kingston G, Madden MR, Mathwich M, Gottlieb AB, Aaronson SA: Human keratinocyte growth factor effects in a porcine model of epidermal wound healing. J. Exp. Med. 178:865–878, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Boismenu R, Feng L, Xia YY, Chang JCC, Havran WL: Chemokine expression by intraepithelial γδ T cells: Implications for the recruitment of inflammatory cells to damaged epithelia. J. Immunol. 157:985–992, 1996.

    PubMed  CAS  Google Scholar 

  34. Janowitz HD: Inflammatory bowel disease: a clinical approach. New York, Oxford University Press, 1994.

    Google Scholar 

  35. Fiocchi C: New concepts of pathogenesis in IBD. In Sutherland LR, Collins SM, Martin F, McLeod R, Targan SR, Walace JL, Williams CN (eds): Inflammatory Bowel Disease: Basic research, clinical implications, and trends in therapy. Dordrecht, Boston, London, Kluwer Academic Publishers, 1994, p. 243–261.

    Google Scholar 

  36. Giacommelli R, Parzanese I, Frieri G, Passacantando A, Pizzuto F, Pimpo T, Cipriani P, Viscido A, Caprilli R, Tonietti G: Increase of circulating γδ T lymphocytes in the peripheral blood of patients affected by active inflammatory bowel disease. Clin. Exp. Immunol. 98:83–88, 1994.

    Article  Google Scholar 

  37. Sonderstrom K, Bucht A, Halapi E, Gronberg A, Magnusson I, Kiessling R: Expansion of Vδl/Vγ8 expressing and Vγ dual expressing γδ T cells in peripheral blood of patients with inflammatory bowel disease. International Congress of Immunology, 1995.

    Google Scholar 

  38. McVay LD, Li B, Biancaniello R, Creighton MA, Bachwich D, Lichtenstein G, Rombeau JL, Carding SR: Changes in human mucosal γδ T cell repertoire and function associated with the disease process in inflammatory bowel disease. Mol. Med. 3:183–203, 1997.

    PubMed  CAS  Google Scholar 

  39. Elson CO, Sartor RB, Tennyson GS, Riddell RH: Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Powrie F: T cells in inflammatory bowel disease: Protective and pathogenic roles. Immunity 3:171–174, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Okayasu I, Hatakeyama M, Yamada M, Ohkusa T, Inagaki Y, Nakaya R: A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702, 1990.

    PubMed  CAS  Google Scholar 

  42. Cooper HS, Murthy SNS, Shah RS, Sedergran DJ: Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69:238–249, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Havran, W.L., Chen, Y., Boismenu, R. (1998). Innate Functions of Epithelial γδ T Cells. In: Gupta, S., Sher, A., Ahmed, R. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VII. Advances in Experimental Medicine and Biology, vol 452. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5355-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5355-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7443-5

  • Online ISBN: 978-1-4615-5355-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics