Skip to main content

Inhibition and Inhibitory Plasticity in the Mammalian Auditory Midbrain

  • Chapter
  • 150 Accesses

Abstract

Neuronal plasticity that involves large scale anatomical changes is restricted to the early period of development. Beyond this there is a “critical period” during which processes of formation of arborization patterns of afferent axons and of synaptic contacts form a basis for plasticity (for a review see Rauschecker, 1991). Although these findings set limits on the prospects for plasticity in the mature nervous system, a number of experimental paradigms have demonstrated considerable functional plasticity in the adult brain. These involve study of the topographic representations of the somatosensory and motor cortices (for reviews see Dykes, 1990; Kaas, 1991; Calford, 1995), the auditory cortex (Robertson and Irvine, 1989; Rajan et al., 1993) and primary visual cortex (Kaas et al., 1990; Gilbert and Wiesel, 1992) following a restricted nerve injury or a behavioural manipulation (Recanzone et al., 1992a,b, 1993). These topographic representations have been chosen as appropriate models because they serve as scales against which any induced changes can be measured. Work in this laboratory over the past nine years has given emphasis to the role of inhibition in the early events following the loss (or inactivation) of a subset of the inputs to a brain area. The initial event is a disinhibition which allows expression (unmasking) of otherwise ineffective inputs (Calford and Tweedale, 1988, 1991a,b).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloway KD, Burton H (1991) Differential effects of GABA and bicuculline on rapidly-and slowly-adapting neurons in primary somatosensory cortex of primates. Exp Brain Res 85: 598–610.

    Article  PubMed  CAS  Google Scholar 

  • Alloway KD, Rosenthal P, Burton H (1989) Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats. Exp Brain Res 78: 514–532.

    Article  PubMed  CAS  Google Scholar 

  • Baxter DA, Byrne JH (1993) Learning rules from neurobiology. In: The Neurobiology of Neural Networks (Gardner D, ed), pp 71–105: Cambridge, Massachusetts: The MIT Press.

    Google Scholar 

  • Calford MB (1995) Mechanisms of learning memory and plasticity in sensory cortex. In: Brain and Memory: Modulation and Mediation of Neuroplasticity (McGaugh JL, Weinberger NM, Lynch G, eds), pp 239–249: New York: Oxford Univerity Press.

    Chapter  Google Scholar 

  • Calford MB, Rajan R, Irvine DRF (1993) Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience 55: 953–964.

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Tweedale R (1988) Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature 332: 446–448.

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Tweedale R (1991) Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying fox. J Neurophysiol 65: 178–187.

    PubMed  CAS  Google Scholar 

  • Calford MB, Tweedale R (1991) Immediate expansion of receptive fields of neurons in area 3b of macaque monkeys after digit denervation. Somatosens Mot Res 8: 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Clarey JC, Tweedale R, Calford MB (1996) Interhemispheric modulation of somatosensory receptive fields: evidence for plasticity in primary somatosensory cortex. Cerebral Cortex 6: 196–206.

    Article  PubMed  CAS  Google Scholar 

  • Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368: 737–740.

    Article  PubMed  CAS  Google Scholar 

  • Dykes RW (1983) Parallel processing of somatosensory information: A theory. Brain Res Rev 6: 47–115.

    Article  Google Scholar 

  • Dykes RW (1990) Acetylcholine and neuronal plasticity in somatosensory cortex. In: Brain Cholinergic Systems (Steriade M, Biesold D, eds), pp 294–313: New York: Oxford University Press.

    Google Scholar 

  • Dykes RW, Landry P, Metherate R, Hicks TP (1984) Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons. J Neurophysiol 52: 1066–1093.

    PubMed  CAS  Google Scholar 

  • Ehret G, Merzenich MM (1988) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res Rev 13: 139–163.

    Article  Google Scholar 

  • Eysel UT, Wilfhard U (1984) The effects of partial retinal lesions on activity and size of cells in the dorsal lateral geniculate nucleus. J Comp Neurol 229: 301–309.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356: 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Hicks TP, Dykes RW (1983) Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition. Brain Res 274: 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (1991) Plasticity of sensory and motor maps in adult mammals. Ann Rev Neurosci 14: 137–167.

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248: 229–231.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Kelly JB (1992) Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat’s inferior colliculus. J Neurosci 12: 4530–4539.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Beckius GE, Shneiderman A (1995) Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. J Comp Neurol 360: 17–32.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, Saint MR (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340: 27–42.

    Article  PubMed  CAS  Google Scholar 

  • Panetsos F, Nunez A, Avendano C (1995) Local anaesthesia induces immediate receptive field changes in nucleus gracilis and cortex. Neuroreport 7: 150–2.

    PubMed  CAS  Google Scholar 

  • Park TJ, Pollak GD (1993) GABA shapes sensitivity to interaural intensity disparities in the moustache bats inferior colliculus — implications for encoding sound location. J Neurosci 13: 2050–2067.

    PubMed  CAS  Google Scholar 

  • Pettit MJ, Schwark HD (1993) Receptive field reorganization in dorsal column nuclei during temporary denervation. Science 262: 2054–6.

    Article  PubMed  CAS  Google Scholar 

  • Rajan R, Irvine DRF, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338: 17–49.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson DD (1988) Projection patterns of digit afferents to the cuneate nucleus in the raccoon before and after partial deafferentation. J Comp Neurol 277: 549–556.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson DD, Nance DM (1986) Non-overlapping thalamocortical projections for separate forepaw digits before and after cortical reorganization in the raccoon. Brain Res Bull 16: 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP (1991) Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. Physiol Rev 71: 587–615.

    PubMed  CAS  Google Scholar 

  • Recanzone GH, Merzenich MM, Jenkins WM, Grajski KA, Dinse HR (1992) Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. J Neurophysiol 67: 1031–1056.

    PubMed  CAS  Google Scholar 

  • Recanzone GH, Merzenich MM, Schreiner CE (1992) Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J Neurophysiol 67: 1071–1091.

    PubMed  CAS  Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87–103.

    PubMed  CAS  Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456–471.

    Article  PubMed  CAS  Google Scholar 

  • Saalmann Y (1996) Neuronal response changes within the central nucleus of the inferior colliculus follow: (I) Deactivation of the dorsal nucleus of the lateral lemniscus, or, (II) Local neurosteroidal administration. Thesis, BSc (Hons), The University of Queensland, Department of Physiology.

    Google Scholar 

  • Semple MN, Kitzes LM (1993) Binaural processing of sound pressure level in cat primary auditory cortex: evidence for a representation based on absolute levels rather than interaural level differences. J Neurophysiol 69: 449–461.

    PubMed  CAS  Google Scholar 

  • Shneiderman A, Chase MB, Rockwood JM, Benson CG, Potashner SJ (1993) Evidence for a GABAergic projection from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. J Neurochem 60: 72–82.

    Article  PubMed  CAS  Google Scholar 

  • Snow PJ, Nudo RJ, Rivers W, Jenkins WM, Merzenich MM (1988) Somatotopically inappropriate projections from thalamocortical neurons to the SI cortex of the cat demonstrated by the use of intracortical microstimulation. Somatosens Res 5: 349–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calford, M.B., Saalmann, Y. (1998). Inhibition and Inhibitory Plasticity in the Mammalian Auditory Midbrain. In: Poon, P.W.F., Brugge, J.F. (eds) Central Auditory Processing and Neural Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5351-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5351-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7441-1

  • Online ISBN: 978-1-4615-5351-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics