Skip to main content

Immunomodulation of Macrophage Functions by Opioids

  • Chapter
Drugs of Abuse, Immunomodulation, and Aids

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 437))

Abstract

Opioid agonists represent a group of natural, semisynthetic, or synthetic drugs with the ability to relieve pain but with the potential risk to provoke physical dependence. Structurally, opioids are phenanthrene derivatives (morphine), phenypiperidine derivatives (fentanyl), diphenylheptane derivatives (methadone),1 and pep tide-related compounds (en- dorphin, enkephalin, and dynorphin).2 Opioids exert their major pharmacologic effect on the central nervous system, however, they also interact with the immune system by altering macrophage, natural killer (NK) cell, and lymphocyte functions, thus impairing immunity against infectious diseases and cancer.3-7 Opioid agonist activities depend on binding to high-affinity receptors named μ, k, and δ which been found on cells of the immune system.2.8-10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McEvoy, G. K., Opiate agonists, in American Hospital Formulary Service Drug Information, G. K. McEvoy, Ed., American Society of Health-System Pharmacists, Bethesda, 1995.

    Google Scholar 

  2. Carr, D. J. J., The role of endogenous opioids and their receptors in the immune system, Proc. Soc. Exp. Biol.Med., 198, 710, 1991.

    PubMed  CAS  Google Scholar 

  3. Guan, L., Towsend, R., Eisenstein, T. K., Adler, M. W., and Rogers, T. J., The cellular basis for opioid-induced immunosuppression, Adv. Exp. Med. BioL, 373, 57, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Roy, S., and Loh, H. H., Effects of opioids on the immune system, Neurochem. Res. 21, 1375, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Tubaro, E., Borelli, G., Croce, C, Cavallo, G., and Santiangeli, C, Effect of morphine on resistance to infection, J. Infect. Dis., 148, 656, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Watson, R. R., Prabhala, R. H., Darban, H. R, Yahya, M. D., and Smith, T. L., Changes in lymphocyte and macrophage subsets due to morphine and ethanol treatment during a retrovirus infection causing murine AIDS, Life Sci., 43, v, 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Yeager, M. P., and Colacchio, T. A., Effect of morphine on growth of metastatic colon cancer in vivo, Arch. Surg., 126, 454, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Lord, J. A., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., Endogenous opioid peptides: multiple agonists and receptors, Nature, 267, 495, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Carr, D. J. J., Rogers, T. J., and Weber, R. J., The relevance of opioid receptors on immunocompetence and immune homeostasis, Proc. Soc. Exp. Biol Med., 213, 248, 1996.

    PubMed  CAS  Google Scholar 

  10. Rouveix, B., Opiates and immune function. Consequences on infectious diseases with special reference to AIDS, Therapie, 47, 503, 1992.

    PubMed  CAS  Google Scholar 

  11. Gorczynski, R. M., Control of the immune response: role of macrophages in regulation of antibody and cell-mediated immune responses, Scan. J. Immunol., 5, 1031, 1976.

    Article  CAS  Google Scholar 

  12. Mackaness, G. B., Cellular resistance to infection, J. Exp. Med., 116, 381, 1962.

    Article  PubMed  CAS  Google Scholar 

  13. Steigbigel, R. T., Lambert, L. H., and Remington, J. S., Phagocytic and bactericidal properties of normal human monocytes, J. Clin. Invest., 53, 131, 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Adams, D. O., Johnson, W. J., and Marino, P. A., Mechanisms of target destruction in macrophage-medi-ated tumor cytotoxicity, Fed. Proc, 41, 2212, 1982.

    PubMed  CAS  Google Scholar 

  15. Adams, D. O., Macrophage activation and secretion. Fed. Proc. 41, 2193, 1982.

    Google Scholar 

  16. Nathan, C. F., Murray, H. W., and Cohn, Z. A., The macrophage as an effector cell, N. Engl. J. Med., 303, 622, 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Douglas, S. D., Mononuclear phagocytes and tissue regulatory mechanisms, Dev. Comp. Immunol., 4, 7, 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Meltzer, M. S., Occhionero, M., and Ruco, L. P., Macrophage activation for tumor cytotoxicity: regulatory mechanisms for induction and control of cytotoxic activity, Fed. Proc, 41, 2198, 1982.

    PubMed  CAS  Google Scholar 

  19. Ruco, L. P., and Meltzer, M. S., Macrophage activation for tumor cytotoxicity: development of macrophage cytotoxic activity requires completion of a sequence of short-lived intermediary reactions, J. Immunol, 121, 2035, 1978.

    PubMed  CAS  Google Scholar 

  20. Nathan, C, and Hibb, J. B. Jr., Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opin. Immunol, 3, 65, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Hibbs, J. B. Jr., Taintor, R. R., Vavrin, Z., and Rachlin, E. M., Nitric oxide: a cytotoxic activated macrophage effector molecule, Biochem. Biophys. Res. Commun., 157, 87, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Flescher, E., Gonen, P., and Keisari, Y., Oxidative burst-dependent tumoricidal and tumorostatic activities of paraffin oil-elicited mouse macrophages, J. Natl. Cancer Inst., 72, 1341, 1984.

    PubMed  CAS  Google Scholar 

  23. Nathan, C. F., Macrophage microbicidal mechanisms, Trans. Roy. Soc. Trop. Med. Hyg., 77, 620, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Gangadharam, P. R. J., and Edwards III, C. K., Release of Superoxide anion from resident and activated mouse peritoneal macrophages infected with Mycobacterium intracellulare, Am. Rev. Respir. Dis., 130, 834, 1984.

    PubMed  CAS  Google Scholar 

  25. Gangadharam, P. R. J, and Pratt, P. F., Susceptibility of Mycobacterium intracellulare to hydrogen peroxide, Am. Rev. Respir. Dis., 130, 309, 1984.

    PubMed  CAS  Google Scholar 

  26. Fortier, A. H., Polsinelli, T., Green, S. J., and Nacy, C. A., Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules, Infect. Immun., 60, 817, 1992.

    PubMed  CAS  Google Scholar 

  27. Becjerman, K. P., Rogers, H. W., Corbett, J. A., Schreiber, R. D., McDaniel, M. L., and Unanue, E. R., Release of nitric oxide during T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes, J. Immunol, 150, 888, 1993.

    Google Scholar 

  28. Denis, M., Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates, Cell Immunol., 132, 150, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Denis, M., Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates, J. Leukoc. Biol., 49, 380, 1991.

    PubMed  CAS  Google Scholar 

  30. Alspaugh, J. A., and Granger, D. L., Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis, Infect. Immun., 59, 2291, 1991.

    PubMed  CAS  Google Scholar 

  31. Mauel, J., Ransijn, A., and Buchmuller-Rouiller, Y, Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives, J. Leukoc. Biol 49, 73, 1991.

    PubMed  CAS  Google Scholar 

  32. Lepoivre, M., Fieschi, F., Coves, J., Thelander, L., and Fontecave, M., Inactivation of ribonucleotide reduc-tase by nitric oxide, Biochem. Biophys. Res. Commun. 179, 442, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Moncada, S., Palmer, R. M. J., and Higgs, E. A., Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev., 43, 109, 1991.

    PubMed  CAS  Google Scholar 

  34. Ding, A., Nathan, C. F., and Stuehr, D. J., Release of reactive nitrogen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production, J. Immunol. 141, 2407, 1988.

    PubMed  CAS  Google Scholar 

  35. Drapier, J. C, Wietzerbin, J., and Hibbs, J. B. Jr., Interferon-γ and tumor necrosis factor induce the L-ar-ginine-dependent cytotoxic effector mechanism in murine macrophages, Eur. J. Immunol., 18, 1587, 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Hibbs, J. B. Jr., Granger, D. L., Krahenbuhl, J. L., and Adams, L. B., Synthesis of nitric oxide from L-arginine: a cytokine inducible pathway with antimicrobial activity, in Mononuclear phagocytes, R. van Furth, Ed., Kluwer Academic Publishers, Boston, 1992.

    Google Scholar 

  37. Lowestein, C. J., Alley, E., Raval, P., Snyder, S. H., Russel, S. W., and Murphy, W., Nitric oxide synthase gene: two upstream regions mediate its induction by interferon-gamma and lipopolysaccharide, Proc. Natl. Acad. Sci. U. S. A., 90, 9730, 1993.

    Article  Google Scholar 

  38. Germain, R. H., and Marguiles, D. M., The biochemistry and cell biology of antigen processing and presentation, Ann. Rev. Immunol., 11, 403, 1993.

    Article  CAS  Google Scholar 

  39. Unanue, E. R., and Allen, P. M., The basis for the immunoregulatory role of macrophages and other accessory cells, Science, 236, 551, 1987.

    Article  PubMed  CAS  Google Scholar 

  40. Zinkernagel, R. M., and Doherty, P. C, Activity of sensitized thymus-derived lymphocytes in lymphocytic choriomeningitis reflects immunological surveillance against self components, Nature, 251, 547, 1974.

    Article  PubMed  CAS  Google Scholar 

  41. Bonta, I. L., and Ben-Efraim S., Involvement of inflammatory mediators in macrophage antitumor activity, J. Leukoc. Biol., 54, 613, 1993.

    PubMed  CAS  Google Scholar 

  42. Mukaida, N., Inflammation and pro-inflammatory cytokines, Jpn. J. Clin. Med., 50, 1724, 1992.

    CAS  Google Scholar 

  43. Si-Xun, Y, and Xiao-Yu, L., Enhancement of interleukin-1 production in mouse peritoneal macrophages by methionine-enkephalin, Acta Pharmacol. Sin., 10, 266, 1989.

    Google Scholar 

  44. Marotti, T., Burek, B., Rabatic, S., Balog, T., and Hrsak, I., Modulation of lipopoiysaccharide-induced production of cytokines by methionine-enkephalin, Immunol. Lett., 40, 43, 1994.

    Article  PubMed  CAS  Google Scholar 

  45. Das, K. P., McMillian, M. K., Bing, G., and Hong, J. S., Modulatory effects of [Met5]-enkephalin on inter-leukin-1 beta secretion from microglia in mixed brain cell cultures, J. Neuroimmunol., 62, 9, 1995.

    Article  PubMed  CAS  Google Scholar 

  46. Apte, R. N., Durum, S. K., and Oppenheim, J. J., Opioids modulate interleukin-1 production and secretion by bone-marrow macrophages, Immunol. Lett., 24, 141, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Apte, R. R, Oppenheim, J. J., and Durum, S. K., β-Endorphin regulates interleukin 1 production and release by murine bone marrow macrophages, Int. Immunol., 1, 465, 1989.

    Article  PubMed  CAS  Google Scholar 

  48. Van den Bergh, P., Rozing, J., and Nagelkerken, L., β-Endorphin stimulates la expression on mouse B cells by inducing interleukin-4 secretion by CD4+ T cells, Cell. Immunol., 149, 180, 1993.

    Article  PubMed  Google Scholar 

  49. Bian, T. H., Wang, X. F., and Li, X. Y., Effect of morphine on interleukin-1 and tumor necrosis factor alpha production from mouse peritoneal macrophages in vitro, Acta Pharmacol Sin., 16, 449, 1995.

    CAS  Google Scholar 

  50. Belkowski, S. M., Alicea, C, Eisenstein, T. K., Adler, M. W., and Rogers, T. J., Inhibition of interleukin-1 and tumor necrosis factor-α synthesis following treatment of macrophages with the kappa opioid agonist U50, 488H, J. Pharmacol Exp. Ther., 273, 1491, 1995.

    PubMed  CAS  Google Scholar 

  51. Alicea, C, Belkowski, S., Eisenstein, T. K., Adler, M. W., and Rogers, T. J., Inhibition of primary murine macrophage cytokine production in vitro following treatment with the k-opioid agonist U50, 488H, J. Neuroimmunol., 64, 83, 1996.

    Article  PubMed  CAS  Google Scholar 

  52. Peterson, P. K., Gekker, G., Hu, S., Anderson, W. R., Kravitz, F., Portoghese, P. S., Balfour, H. H. Jr., and Chao, C. C, Morphine amplifies HIV-1 expression in chronically infected promonocytes cocultured with human brain cells, J. Neuroimmunol., 50, 167, 1994.

    Article  PubMed  CAS  Google Scholar 

  53. Chao, C. C, Gekker, G., Sheng, W. S., Hu, S., Tsang, M., and Peterson, P. K., Priming effect of morphine on the production of tumor necrosis factor-a by microglia: implications in respiratory burst activity and human immunodeficiency virus-1 expression, J.Pharmacol Exp. Ther., 269, 198, 1994.

    PubMed  CAS  Google Scholar 

  54. Chao, C. C, Gekker, G., Hu, S., Sheng, W. S., Portoghese, P. S., and Peterson, P. K., Upregulation of HIV-1 expression in cocultures of chronically infected promonocytes and human brain cells by dynorphin, Bio-chem. Pharmacol., 50, 715, 1995.

    Article  CAS  Google Scholar 

  55. Weber, R. J., and Pert, A., The periaqueductal gray matter mediates opiate-induced immunosuppression, Science, 245, 188, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Weber, R. J., and Pert, A., Immune system, in Encyclopedia of Neuroscience, Smith, B., and Adelman, G., Birkhauser Boston, Cambridge, MA, in press, 1997.

    Google Scholar 

  57. Bian, T. H., and Li, X. Y., Immunomodulating effects of morphine microinjected into periaqueductal gray, Acta Pharmacol Sin., 16, 121, 1995.

    CAS  Google Scholar 

  58. House, R. V., Thomas, P. T., and Bhargava, H. N., A comparative study of immunomodulation produced by in vitro exposure to delta opioid receptor agonist peptides, Peptides, 17, 75, 1996.

    Article  PubMed  CAS  Google Scholar 

  59. Tosk, J. M., Grim, J. R., Kinback, K. M., Sale, E. J., Bozzetti, L. P., and Will, D., Modulation of chemilu-minescence in a murine macrophage cell line by neuroendocrine hormones, Int. J. Immunopharmacol., 15, 615, 1993.

    Article  PubMed  CAS  Google Scholar 

  60. Sharp, B. M., Keane, W. F., Suh, H. J., Gekker, G., Tsukayama, D., and Peterson, P. K., Opioid peptides rapidly stimulate Superoxide production by human polymoprhonuclear leukocytes and macrophages, Endocrinology, 117, 793, 1985.

    Article  PubMed  CAS  Google Scholar 

  61. Peterson, P. K., Sharp, B. M., Gekker, G., Brummitt, C, and Keane, W.F., Opioid-mediated suppression of cultured peripheral blood mononuclear cell respiratory burst activity, J. Immunol., 138, 3907, 1987.

    PubMed  CAS  Google Scholar 

  62. Radulovic, J., Dimitrijevic, M., Laban, O., Stanojevic, S., Vasiljevic, T., Kovacevic-Jovanovic, V., and Markovic, B. M., Effect of met-enkephalin and opioid antagonists on rat macrophages, Peptides, 16, 1209, 1995.

    Article  PubMed  CAS  Google Scholar 

  63. Efanov, A. M., Koshkin, A. A., Sazanov, L. A., Borodulina, O. I., Varfolomeev, S. D., and Zaitsev, S. V., Inhibition of the respiratory burst in mouse macrophages by ultra-low doses of an opioid peptide is consistent with a possible adaptation mechanism. FEBS Lett. 355, 114, 1994.

    Article  PubMed  CAS  Google Scholar 

  64. Stuehr, D. J., and Nathan, C. F., Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells, J. Exp. Med., 169, 1543, 1989.

    Article  PubMed  CAS  Google Scholar 

  65. Pacifici, R., Minetti, M., Zuccaro, P., and Pietraforte, D., Morphine affects cytostatic activity of macrophages by the modulation of nitric oxide release, Int. J. Immunopharmacol. 17, 771, 1995.

    Article  PubMed  CAS  Google Scholar 

  66. Fecho, K., Maslonek, K. A., Coüssons-Read, M. E., Dykstra, L. A., and Lysle, D. T., Macrophage-derived nitric oxide is involved in the depressed concanavalin A responsiveness of splenic lymphocytes from rats administered morphine in vivo, J. Immunol. 152, 5845, 1994.

    PubMed  CAS  Google Scholar 

  67. Magazine, H. I., Liu, Y, Bilflnger, T. V., Fricchione, G. L., and Stefano, G. B., Morphine-induced confor-mational changes in human monocytes, granulocytes, and endothelial cells and in invertebrate immuno-cytes and microglia are mediated by nitric oxide, J. Immunol., 156, 4845, 1996.

    PubMed  CAS  Google Scholar 

  68. Schneider, G. M., and Lysle, D. T., Evidence for the involvement of CNS in the modulation of splenic nitric oxide production, J. Neuroimmunol., 69, 25, 1996.

    Article  Google Scholar 

  69. Iuvone, T., Capasso, A., D’Acquisto, F, and Carnuccio, R., Opioids inhibit the induction of nitric oxide synthase in J774 macrophages, Biochem. Biophys. Res. Commun., 212, 975, 1995.

    Article  PubMed  CAS  Google Scholar 

  70. Adams, D. O., and Hamilton, T. A., The cell biology of macrophage activation, Ann. Rev. Immunol., 2, 283, 1984.

    Article  CAS  Google Scholar 

  71. Appelberg, R., Castro, A. G., Pedrosa, J., Silva, R. A., Orme, I. M., and Minóprio P., Role of gamma inter-feron and tumor necrosis factor alpha during T-eell-independent and-dependent phases of Mycobacterium avium infection. Infect. Immun. 62, 3962, 1994.

    PubMed  CAS  Google Scholar 

  72. Tubaro, E., Avico, U., Santiangeli, C, Zuccaro, P., Cavallo, G., Pacifici, R., Croce, C, and Borelli, G., Morphine and methadone impact on human phagocytic physiology, Int. J. Immunopharmacol., 7, 865, 1985.

    Article  PubMed  CAS  Google Scholar 

  73. Tubaro, E., Santiangeli, C, Belogi, L., Borelli, G., Cavallo, G., Croce, C, and Avico, U., Methadone vs morphine: comparison of their effect on phagocytic functions, Int. J. Immunopharmacol., 9, 79, 1987.

    Article  PubMed  CAS  Google Scholar 

  74. Rojavin, M., Szabo, I., Bussiere, J. L., Rogers, T. J., Adler, M. W., and Eisenstein, T. K., Morphine treatment in vitro or in vivo decreases phagocytic functions of murine macrophages, Life Sci., 53, 997, 1993.

    Article  PubMed  CAS  Google Scholar 

  75. Casellas, A. M., Guardiola, H., and Renaud, F. L., Inhibition by opioids of phagocytosis in peritoneal macrophages, Neuropeptides, 18, 35, 1991.

    Article  PubMed  CAS  Google Scholar 

  76. Szabo, I., Rojavin, M., Bussiere, J. L., Eisenstein, T. K., Adler, M. W., and Rogers, T. J., Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids, J. Pharmacol. Exp. Ther., 267, 703, 1993.

    PubMed  CAS  Google Scholar 

  77. Fóris, G., Medgyesi, G. A., and Hauck, M., Bidirectional effect of met-enkephalin on macrophage effector functions, Mol. Cell. Biochem., 69, Ml, 1986.

    Article  Google Scholar 

  78. Carrera, J., Catala, J. C, Monedero, P., Carrascosa, F., Arroyo, J. L., and Subira, M. L., Depression of the mononuclear phagocyte system caused by high doses of narcotics, Rev. Med. Univ. Navarra, 37, 119, 1992.

    PubMed  CAS  Google Scholar 

  79. Peterson, P. K., Gekker, G., Hu, S. X., Sheng, W. S., Molitor, T. W., and Chao, C. C, Morphine stimulates phagocytosis of Mycobacterium tuberculosis by human microglial cells: involvement of a G protein-coupled opiate receptor, Adv. Neuroimmunol., 5, 299, 1995.

    Article  PubMed  CAS  Google Scholar 

  80. Ichinose, M., Asai, M., and Sawada, M., Enhancement of phagocytosis by dynorphin A in mouse peritoneal macrophages, J. Neuroimmunol., 60, 37, 1995.

    Article  PubMed  CAS  Google Scholar 

  81. Lin, J., Ageing suppresses the enhancement of T cell mitogenesis by opioid peptides and enkephalins increase phagocytosis of murine macrophages, Acta Acad.Med. Sin., 14, 233, 1992.

    CAS  Google Scholar 

  82. Lopker, A., Abood, L. G., Hoss, W., and Lionetti, F. J., Stereoselective muscarinic acethylcholine and opiate receptors in human phagocytic leukocytes, Biochem. Pharmacol., 29, 1361, 1980.

    Article  PubMed  CAS  Google Scholar 

  83. Bryant, H. V., and Roudebush, R. E., Suppressive effects of morphine pellet implants on in vivo parameters of immune functions, J. Pharmacol. Exp. Ther., 255, 410, 1990.

    PubMed  CAS  Google Scholar 

  84. Bryant, H. V., Bernton, E. W., Kenner, J. R., and Holaday, J. W., Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment, Endocrinology, 128, 3253, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gomez-Flores, R., Weber, R.J. (1998). Immunomodulation of Macrophage Functions by Opioids. In: Friedman, H., Madden, J.J., Klein, T.W. (eds) Drugs of Abuse, Immunomodulation, and Aids. Advances in Experimental Medicine and Biology, vol 437. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5347-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5347-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7439-8

  • Online ISBN: 978-1-4615-5347-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics