Influence of the Apoe Genoptype on Serum Apoe Levels in Alzheimer’s Disease Patients

  • L. Corzo
  • L. Fernández-Novoa
  • R. Zas
  • K. Beyer
  • J. I. Lao
  • X. A. Alvarez
  • R. Cacabelos
Part of the Advances in Behavioral Biology book series (ABBI, volume 49)

Abstract

Alzheimer’s disease (AD) is a devastating neurologic disorder that affects more than 20 million individuals of all races and ethnic backgrounds. The incidence of AD in the general population is about 1%, with a prevalence of 5–15% in people older than 65 years of age. AD is an etiologically and genetically heterogeneous disorder. So far, 4 chromosomes have been implicated in the etiopathogenesis of AD. Several missense mutations in the amyloid precursor protein gene (APP) on chromosome 21 have been found in about 3% of familial early-onset AD. This familial pattern is consistent with an autosomal dominant inheritance (St. George-Hyslop et al., 1987). In 1992, two different groups discovered genetic linkage to a major familial AD gene defect on chromosome 14 in the region 14q24.3 (St.George-Hyslop et al., 1992; Schellenberg et al., 1992). In that region, several candidate genes have been postulated, including c-fos and presenilin 1 (Van Broeckhoven et al., 1992; Mullan et al., 1992; Sherrington et al., 1995). An intronic polimorphism located at 3’to exon 8 of the presenilin 1 (PSI) gene was described (Wragg et al., 1996). The most common allele has an adenine at nucleotide position 16 (allele 1) in the intron, while the variant allele has a cytosine at the same position (allele 2). Neither the 1/2 genotype nor the 2/2 genotype were associated with increased risk for AD, whereas the 1/1 genotype was associated with an approximately 2-fold risk.The STM2 gene maps on chromosome 1 and was also found to have two point mutations segregating in early-onset AD families (Levy-Lahad et al., 1995). In the nineties several groups showed evidence for an AD susceptibility gene on chromosome 19 (Pericak-Vance et al., 1991; Farrer et al., 1992; Stritmatter et al., 1993). The responsible gene was the APOE gene located at 19ql3.2, which encodes apolipoprotein E (ApoE), a 34 kD glycosilated protein associated with plasma lipoproteins (Weisgraber, 1994; Hallmann et al., 1991). Three common APOE variants are encoded by three APOE alleles: εl, ε;3 and ε4. Several groups have reported an association between late-onset AD or sporadic AD and the APOε4 allele (Saunders et al., 1993; Beyer et al., 1996). The risk of suffering AD-type dementia increases with the number of associated genetic factors identified in an individual. Consistent with the APOE ε4-late onset AD association, the presence of ApoE4 in the characteristic AD brain lesions, such as senile plaques, and neurofibrillary tangles has been demonstrated (Namba et al., 1991). It is known that in vitro Apo e4 binds more avidly to β-amyloid peptide (βA) than ApoE3 in order to form stable ApoE-βA complexes that would result in βA deposition (Strittmatter et al., 1993; Sanan et al., 1994). In contrast, another major protein implicated in AD, tau protein, binds strongly in vitro to ApoE3 but not to ApoE4. One hypothesis proposes that Apo E3-tau interactions serve as a protective mechanism against tau phosphorilation (Strittmatter et al., 1994). It is well known the function of ApoE in peripheral lipid metabolism and in the homeostasis of cholesterol. The role of ApoE in the brain is not well understood although it seems to be related to the redistribution of cholesterol within neuronal tissues undergoing repair or remodeling (Boyles et al., 1989). Poitier et al (1991) demonstrated that ApoE is important in the transport and redistribution of cholesterol during membrane remodelling in the central nervous system of the rat. Serum ApoE levels were measured by different groups in healthy and disease states. ApoE concentrations vary as a function of different biological factors as age, decreasing ApoE levels after the age of 60 (Siest et al., 1995). Several other groups also studied the levels of ApoE in AD patients. Lehtimäki et al. in 1995 found that ApoE concentrations in cerebrospinal fluid were lower in AD patients than in healthy subjects, but they did not find differences among ApoE phenotypes. Serum ApoE levels in AD patients could also be different from healthy subjects due to the implication of ApoE in the etiopathogenesis of AD. In this study, we measured serum ApoE, total-cholesterol, triglycerides and lipoproteins-cholesterol levels in AD patients and control subjects in order to know the influence of the APOE genotype on the serum levels of these biochemical parameters, and to assess if AD patients have a different lipid and lipoprotein profile than controls.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer K., Lao J.I., Alvarez X.A., Cacabelos R., 1997, A general method for DNA polymorphism identification in genetic assessment and molecular diagnosis. Meth. Find. Exp. Clin. Pharmacol. 19: 87–91. Google Scholar
  2. Beyer K., Lao J.I, Alvarez X.A., Cacabelos R., 1996, Different implications of APO ε4 in Alzheimer’s disease and vascular dementia in the Spanish population. Alzheimer’s Res. 2: 215–220.Google Scholar
  3. Boyles J.K., Zoellner C.D., Anderson L.J., Kosik L.M., Pitas R.E., Weisgraber K.H., 1989, A role for apolipopro-tein E, apolipoprotein A-I and low density lipoprotein receptor in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J. Clin. Invest. 83:1015–1031.PubMedCrossRefGoogle Scholar
  4. Czech H., Förstl F., Hentschel F., Mönning U., Besthorn C., Geiger-Kabish C., Sattel H., Masters C., Beyreuther K., 1994, Apolipoprotein E-4 gene dose in clinically diagnosed Alzheimer’s disease: prevalence, plasma cholesterol levels and cerebrovascular change. Psychiatry Clin. Neurosci. 243:291–292.CrossRefGoogle Scholar
  5. Diagnostic and Statistical Manual of Mental Disorders (4th ed). Washington, DC: Am. Psychiatric Assoc. 1994:133–55.Google Scholar
  6. Farrer L.A., Stice L., 1992, Susceptibility genes for familial Alzheimer’s disease on chromosome 19 and 21: A reality check. Genet. Epidemiol. 9:123–127.CrossRefGoogle Scholar
  7. Giubilei F., d Antona R., Antonini R., Lenzi GL., Ricci G., Fieschi G, 1990, Serum lipoprotein pattern variations in dementia and ischemic stroke. Acta Neurol. Scand. 81:84–6.PubMedCrossRefGoogle Scholar
  8. Hallmann D.M., Boerwinkle E., Saha N., Sandholzer C., Menzel H.J., Czazar A., Utermann G., 1991, The apolipoprotein E polymorphism: a comparison of alelle frequencies and effects in nine populations. Am. J. Hum. Genet. 45:793–302.Google Scholar
  9. Lehtimäki T., Pirttilä T., Mehta P.D., Wisniewski H.M., Frey H., Nikkari T., 1995, Apolipoprotein E (apoE) polymorphism and its influence on ApoE concentrations in the cerebrospinal fluid in Finnish patients with Alzheimer’s disease. Hum. Genet. 95:39–42.PubMedCrossRefGoogle Scholar
  10. Levy-Lahad E., Wasco W., Pookaj P., Romano D.M., Oshima J., Pettingell W.H., Yu Ch., Jondro P.D., Schmidt D., Wang K., Crowley A.C., Fu Y.-H., Guenette S.Y., Galas D., Nemens E., Wijsman E.M., Bird T.D., Schel-lenberg G.D., Tanzi R.E., 1995, Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977.PubMedCrossRefGoogle Scholar
  11. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M., 1984, Clinical diagnosis of Alzheimer’s disease: Report of NINCDS-ADRDA Work Group. Neurology 34:939–944.PubMedCrossRefGoogle Scholar
  12. Muckle TJ., Roy JR., 1985, High-density lipoprotein cholesterol in differential diagnosis of senile dementia. Lancet i: 1191–3.CrossRefGoogle Scholar
  13. Mullan M., Houlden H., Windelspecht M., Fidani L., Lombardi C., Diaz P., Rossor M., Crook, R., Hardy J., Duff K., Crawford F., 1992, A locus for familial early onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha1-antichymotrypsin gene. Nat. Genet. 2:340–342.PubMedCrossRefGoogle Scholar
  14. Namba Y, Tomonoga M., Kawasaki H., Otomo E., Ikeda K., 1991, Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neuroftbrillary tangles in Alzheimer’s disease and kuru plaqueamyloid in Creutzfeldt-Jakob disease. Brain Res. 541:163–166.PubMedCrossRefGoogle Scholar
  15. Pericak-Vance M.A., Bebout J.L., Gaskell Jr. P.C., Yamaoka L.H., Hung W.Y., Alberts M.J., Walker A.P., Bartlett R.J., Haynes C.A., Welsn C.A., Earl N.L., Heyman C.A., Clark C.M., Roses A.D., 1991, Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum. Gen. 48:1034–1050.Google Scholar
  16. Poitier J., Hess M., May P.C., Finch CE., 1991, Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Mol. Brain Res. 11:97–106.CrossRefGoogle Scholar
  17. Rebeck GW., Reiter JS., Strickland DK., Hyman BT., 1993, Apolipoprotein E in sporadic Alzheimer’s disease: al-lelic variation and receptor interactions. Neuron 11:575–580.PubMedCrossRefGoogle Scholar
  18. Sanan D.A. Weisgraber K.H., Russell S.J., Mahley R.W., Huang D., Saunders D.A., Schmechel D., Wisniewski T., Frangione B., Roses B., Strittmatter W.J., 1994, Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apo E3. J. Clin. Invest. 94:860–869.PubMedCrossRefGoogle Scholar
  19. Saunders A.M., Strittmatter W.J., Schmechel D., St George-Hyslop P.H., Pericak-Vance M.A., Joo S.H., Rosi B.L., Gusella J.F., Crapper-MacLachlan D.R., Alberts M.J., Hulette C., Crain B., Goldgaber D., Roses A.D., 1993, Association of apolipoprotein E allele ε4 with late-onset familial or sporadic Alzheimer’s disease. Neurology 43:1467–1472.PubMedCrossRefGoogle Scholar
  20. Schellenberg G.D., Bird T.D., Wijsman E.M., Orr H.T., Anderson L., Nemens E., White J.A., Bonnycastle L., Weber J.L., Alonso M.E., Potter H., Heston L.L., Martin G.M., 1992, Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258:668–671.PubMedCrossRefGoogle Scholar
  21. Sherrington R., Rogaev E.I., Liang Y., Rogaeva E.A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K., Tsuda T., Mar L., Foncin J.-F., Bruni A.C., Montesi M.P., Sorbi S., Rainero I., Pinessi L., Nee L., Chu-makov I., Polien D., Brookes A., Sanseau P., Polinsky R.J., Wasco W., Da Silva H.A.R., Haines J.L., Pericak-Vance M.A., Tanzi R.E., Roses A.D., Fraser P.E., Rommens J.M., St George-Hyslop P.H., 1995, Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760.PubMedCrossRefGoogle Scholar
  22. Siest G., Pillot T., Régis-Bailly A., Leininger-Muller B., Steinmetz J., Galteau M.-M., Visvikis S., 1995, Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin. Chem. 41:1068–1086.PubMedGoogle Scholar
  23. St. George-Hyslop P.H., Tanzi R.E., Polinski R.J., Haines J.L., Nee L., Watkins P.C., Meyers R.H., Feldman R.G., Pollen D., Drachman D., Growdonn J., Bruni A., Foncin J.F., Salmon G., Fromheld P., Amaducci L., Sorgi S., Placentini S., Steward G.D., Hobbs W., Conneally P.M., Gusella J.F., 1987, The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–890.PubMedCrossRefGoogle Scholar
  24. St. George-Hyslop P.H., Haines J.L., Rogaev E., Mortilla M., Vaula G., Pericak-Vance M., Foncin J.F., Montesi M., Bruni A., Sorbi S., Rainero I., Pinessi L., Pollen D., Polinsky R., Nee L., Kennedy J., Macciardi F., Rogaeva E., Liang Y., Alexandrova N., Lukiw W., Schlumpf K., Tanzi R., Tsuda T., Fairer L., Cantu J.M., Duara R., Amaducci L., Bergamini W., Gusella J., Roses A., Crapper McLachlan D., 1992, Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat. Genet. 2:330–334.PubMedCrossRefGoogle Scholar
  25. Stritmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M.A., Enghild J., Salvesen G.S., Roses A.D., 1993, Apolipoprotein E high avidity binding to β-amyloid and increased frecuency of type 4 allele in late-onset familial Alzheimer’s disease. Proc. Natl. Acad. Sci.USA 90:1977–1981.CrossRefGoogle Scholar
  26. Strittmatter W.J., Weisgraber K.H., Huang D.Y., Dong L.M., Salveser G.S., Pericak-Vance M., Schmechel D., Saunders A.M., Goldgaber D., Roses A.D., 1993, Binding of human apolipoprotein E to synthetic amyloid β-peptide: isoform specific effects and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:8098–8102.PubMedCrossRefGoogle Scholar
  27. Strittmatter W.J., Weisgraber K.H., Goedert M., Saunders A.M., Huang D., Corder E.H., Dong L.M., Jakes R., Alberts M.J., Gilbert J.R., Han S.-H., Hulette Ch., Einstein G., Schmechel D.E., Pericak-Vance M., Roses A.D., 1994, Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp. Neurol. 125:163–171.PubMedCrossRefGoogle Scholar
  28. Van Broeckhoven C., Backhovens H., Crusts M., Winter G., de Bruyland M., Cras P., Martin J.J., 1992, Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. Nat. Genet. 2:335–339.PubMedCrossRefGoogle Scholar
  29. Weisgraber K.H., 1994, Apolipoprotein E: Structure-function relationship. Adv. Prot. Chem. 45:249–320.CrossRefGoogle Scholar
  30. Wieringa G.E., Burlinson S., Rafferty JA., Gowland E., Burns A., 1997, Apolipoprotein E genotypes and serum lipid levels in Alzheimer’s disease and multi-infarct dementia. Int. J. Geriat. Psychiatry 12: 359–362.CrossRefGoogle Scholar
  31. Wragg M., Hutton M., Talbot C., 1996, Alzheimer’s Disease Collaborative Group. Genetic association betweeen intronic polymorphism in presenilin-1 gene and late-onset Alzheimer’s disease. Lancet 347:509–512.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • L. Corzo
    • 1
  • L. Fernández-Novoa
    • 1
  • R. Zas
    • 1
  • K. Beyer
    • 1
  • J. I. Lao
    • 1
  • X. A. Alvarez
    • 1
  • R. Cacabelos
    • 1
  1. 1.EuroEspes Biomédical Research CenterLa CoruñaSpain

Personalised recommendations