Skip to main content

Bioprocessing of chitin and chitosan

  • Chapter
Book cover Fisheries Processing

Abstract

Chitin is a non-toxic, biodegradable, high molecular weight, naturally occurring polymer of N-acetylglucosamine and glucosamine residues, which is widely distributed in nature. The constituent monosaccharide units in chitin are linked together by β(1–4) glycosidic bonds. It is the second most abundant natural polymer after cellulose (Ruiz-Herrera, 1978) with which it bears a structural resemblance, except that the some of the -OH groups bonding the second carbon position of cellulose are acetylated in chitin (Tsugita, 1991). Chitin is found associated with protein in the exoskeletons of marine invertebrates, insects and arachnids (Austin et al., 1981), and in the cell walls of various fungi and algae. Chitosan is the N-deacetylated form of chitin and is derived from chitin by deacetylation, i.e. the acetamide groups in chitin are substituted into amino groups in chitosan. Chitosan forms the body wall of most fungi, molds and yeasts (Ruiz-Herrera, 1978), and like chitin, chitosan is non-toxic and biodegradable. Chitin and chitosan are produced by fresh water invertebrates (e.g. arthropods, bryozoans and Zooplanktons) in eutrophic stagnant waters. In the fresh water environment, arthropods are the main chitin producers, with annual chitin production of about 51 g/m2). In the salt water environment, the major chitin producers include marine haloplanktonic crustaceans (e.g. copepods, cladecera and euphausiaceae); and marine benthic and pelagic species (including various crustaceans, hydrozoans and bryozoans). Some terrestrial animals also possess chitinous integuments (e.g. insects, Crustacea, annelids and mollusks), while fungi, molds and yeasts also possess chitinous cell walls (Ruiz-Herrera, 1978). In animals, these chitinous polymers carry out a protective and/or mechanical function, serving as ‘envelopes’ for eggs and other latent forms of life such as cysts; they contribute to the formation of locomotor appendages and masticatory organs such as jaws and radula; and also serve a protective role in the intestinal mucosa of some arthropods and annelids (Muzzarelli, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, G.G., Fox, J.R. and Kong, N. (1978) A critical evaluation of the potential sources of chitin and chitosan, in Proceedings of the 1st International Conference on Chitin/Chitosan, (eds R.A.A. Muzzarelli and E.R. Parisen), MIT Sea Grant Program, Cambridge, MA.

    Google Scholar 

  • Araki, Y. and Ito, E. (1974) A pathway of chitosan formation in Mucor rouxii. Enzymatic deacetylation of chitin. Biochem. Biophys. Res. Commun., 56, 669–675.

    Article  CAS  Google Scholar 

  • Araki, Y. and Ito, E. (1975) A pathway of chitosan formation in Mucor rouxii. Enzymatic deacetylation of chitin. Eur. J. Biochem., 55, 71–75.

    Article  CAS  Google Scholar 

  • Arcidiacono, S., Lombardi, S.J. and Kaplan, D.L. (1988) Fermentation, processing and enzyme characterization for chitosan biosynthesis by Mucor rouxii, in Chitin and Chitosan, (eds G. Skjak-Braek, T. Anthonsen and P. Sanford), Elsevier Applied Science, New York, p. 319.

    Google Scholar 

  • Austin, P.R. (1988) Chitin solutions and purification of chitin. Methods Enzymol., 161, 403–407.

    Article  CAS  Google Scholar 

  • Austin, P.R., Brine, C.J., Castle, J.E. and Zikakis, J.P. (1981) Chitin: new facet of research. Science, 212, 749–753.

    Article  CAS  Google Scholar 

  • Baba, S., Uraki, Y., Miura, Y. and Tokura, S. (1988) Controlled release and hydrolysis of prodrug using carboxymethyl-chitin as a drug carrier, in Chitin and Chitosan, (eds G. Skjak-Braek, T. Anthonsen and P. Sanford), Elsevier Applied Science, New York, p. 702.

    Google Scholar 

  • Bartnicke-Garcia, S. and Nickerson, W.J. (1962) Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochim. Biophys. Acta, 58, 102–119.

    Article  Google Scholar 

  • Bernadet, M.F. (1969) Skin cosmetics from chitin. French Patent FR 1552026.

    Google Scholar 

  • Blumberg, R., Southall, C., Van Rensberg, N.J. and Volkmann, O.B. (1951) South African fish products. XXXII. The rock lobster: A study of chitin production from processing wastes. J. Sci. Food Agric, 2, 571–576.

    Article  CAS  Google Scholar 

  • Bough, W.A. (1976) Chitosan — a polymer from seafood wastes, for use in treatment of food process wastes and activated sludge. Process Biochem., 11, 13–16.

    Google Scholar 

  • Brine, C.J. and Austin, P.R. (1981) Chitin variability with species and method of preparation. Comp. Biochem. Physiol., 69B, 283–286.

    CAS  Google Scholar 

  • Broussignac, P. (1968) Chitosan, a natural polymer not well known by the industry. Chim. Ind. Genie. Chim., 99, 1241–1246.

    CAS  Google Scholar 

  • Brzeski, M.M. (1982) Concepts of chitin and chitosan isolation from Antarctic krill (Euphasia superba dana) shells on a technical scale, in Proceedings of the 2nd International Conference of the Japanese Society of Chitin and Chitosan, (eds S. Hirano and S. Tokura), Sapporo, Japan.

    Google Scholar 

  • Brzeski, M.M. (1988) Production and application of chitin and chitosan in Poland, in Chitin and Chitosan, (eds G. Skjak-Braek, T. Anthonsen and P. Sanford), Elsevier Applied Science, New York, p. 161.

    Google Scholar 

  • Davies, D.H., Elson, C.M. and Hayes, E.R. (1988) N,O-carboxymethylchitosan, a new water soluble chitin derivative, in Chitin and Chitosan, (eds G. Skjak-Braek, T. Anthonsen and P. Sanford). Elsevier Applied Science, New York, p. 467.

    Google Scholar 

  • Foster, A.B. and Hackman, R.H. (1957) Application of ethylenediaminetetraacetic acid in the isolation of crustacean chitin. Nature, 180, 40–41.

    Article  CAS  Google Scholar 

  • Fujita, T. (1972) Recovery of proteins. Japanese Patent 01 633.

    Google Scholar 

  • Gagne, N. (1993) Optimization studies on chitin/chitosan from crustacean waste. MSc Thesis. McGill University.

    Google Scholar 

  • Gross, P., Konrad, E. and Mger, H. (1983) Investigation on chitosan as a natural film-forming ingredient in hair cosmetic products under the consideration of ecological aspects. Parfuem Kosmetique, 64(7), 71–79.

    Google Scholar 

  • Hackman, R.H. (1954) Studies on chitin. 1. Enzymatic degradation of chitin and chitosan esters. Aust. J. Biol. Sci., 7, 168–178.

    CAS  Google Scholar 

  • Hackman, R.H. (1960) The occurrence of complexes in which chitin and protein are covalently linked. Aust. J. Biol. Sci., 13, 568–577.

    CAS  Google Scholar 

  • Hadwiger, L.A. (1984). Chitosan, a natural regulator in plant-fungal pathogen interactions increases crop yields, in Chitin, Chitosan and Related Enzymes, (ed. J.P. Zikakis), Academic Press, San Diego, p. 291.

    Google Scholar 

  • Hirano, S. (1988) Production and application of chitin and chitosan in Japan, in Chitin and Chitosan, (eds G. Skjak-Braek, T. Anthonsen and P. Sanford), Elsevier Applied Science, New York, p. 37.

    Google Scholar 

  • Horowitz, S.T., Roseman, S. and Blumenthal, H.J. (1957) Preparation of glucosamine oligosaccharides. 1. Separation. J. Am. Chem. Soc., 79, 5046–5049.

    Article  CAS  Google Scholar 

  • Kauss, H. and Bauch, B. (1988) Chitin deacetylase from Colletotrichum Undermuthianum. Methods Enzymol., 161, 518–523.

    Article  CAS  Google Scholar 

  • Kauss, H., Jeblick, W. and Young, D.H. (1982/83) Chitin deacetylation from the plant pathogen Colletotrichum lindemuthianum. Plant Sci. Lett., 28, 231–236.

    Google Scholar 

  • Knorr, D. (1984). Use of chitinous polymers in food. Food Technol., 38, 85–97.

    CAS  Google Scholar 

  • Knorr, D. and Betschart, A.A. (1978) The relative effect of an inert substance and protein concentrates on loaf volume of breads. Food Sci. Technol., 11, 198–203.

    Google Scholar 

  • Knorr, D. and Betschart, A.A. (1981) Water absorption and loaf volume of protein fortified breads. Food Sci. Technol., 14, 306–312.

    Google Scholar 

  • Knorr, D. and Klein, J. (1986) Production and conversion of chitosan with cultures of Mucor rouxii or Phycomyces blakesleeanus. Biotechnol. Letts., 8, 691–694.

    Article  CAS  Google Scholar 

  • Knorr, D. (1991) Recovery and utilization of chitin and chitosan in food processing waste management. Food Technol., 44, 114–122.

    Google Scholar 

  • Kreger, D.R. (1954) Observation of cell walls of yeast and some other fungi by X-ray diffraction and solubility tests. Biochim. Biophys. Acta, 13, 1–9.

    Article  CAS  Google Scholar 

  • Lang, G. and Clausen, T. (1988) The use of chitosan in cosmetics, in Chitin and Chitosan, (eds G. Skjak-Braek, T. Anthonsen and P. Sanford), Elsevier Applied Science, New York, p. 139.

    Google Scholar 

  • Lusena, C.V. and Rose, R.C. (1953). Preparation and viscosity of chitosan. J. Fish Res. Board Can., 10, 521–522.

    Article  CAS  Google Scholar 

  • Madhavan, P. and Ramachandran, N.K.G. (1974) Utilization of prawn waste: isolation of chitin and its conversation to chitosan. Fish. Technol., 11, 50–53.

    CAS  Google Scholar 

  • Malette, W.G., Quigley, H.J. and Adickes, E.P. (1982) Chitosan Effect in Vascular Technology, (eds R.A.A. Muzzarelli, C. Jeuniaux and G.W. Gooday), Plenum Press, New York, p. 435.

    Google Scholar 

  • Markey, M.L., Bowman, L.M. and Bergamini, M.V.W. (1988) Contact lenses made of chitosan, in Chitin and Chitosan, (eds G. Skjak-Braek, T. Anthonsen and P. Sanford), Elsevier Applied Science, New York, p. 713.

    Google Scholar 

  • McGahren, W.J., Perkinson, G.A., Growich, J.A. et al. (1984) Chitosan by fermentation. Process Biochem., 19, 88–90.

    CAS  Google Scholar 

  • Mima, S., Miya, M., Iwamoto, R. and Yoshikawa, S. (1982) Highly deacetylated chitin and its properties, in Proceedings of the 2nd International Conference of the Japanese Society of Chitin and Chitosan, (eds S. Hirano and S. Tokura), Sapporo, Japan, p. 21.

    Google Scholar 

  • Muzzarelli, R.A.A. (1977) Chitin, Pergamon Press, Oxford.

    Google Scholar 

  • Muzzarelli, R.A.A. (1983) Chitin and its derivatives: new trends of applied research. Carbohydr. Polym., 3, 53–58.

    Article  CAS  Google Scholar 

  • Muzzarelli, R.A.A., Tanfani, F., Emanuelli, M. et al. (1981) The production of chitosans of superior quality. J. Appl. Biochem., 3, 316–321.

    CAS  Google Scholar 

  • Muzzarelli, R., Tarsi, R., Fillipini, O. et al. (1990) Antimicrobial properties of N-carboxymethyl chitosan. Antimicrob. Agents Chemother., 34, 2019–2023.

    Article  CAS  Google Scholar 

  • Nagai, T., Sawayanagi, Y. and Nambu, N. (1984) Application of chitin and chitosan to pharmaceutical applications, in Chitin, Chitosan and Related Enzymes, (ed. J.P. Zikakis), Academic Press, New York, p. 21.

    Google Scholar 

  • Nagyvany, J.J., Falk, J.D., Hill, M.L. et al. (1979) The hypolipidemic activity of chitosan and other polysaccharides in rats. Nutr. Rep. Int., 20, 677–684.

    Google Scholar 

  • Nishimura, K.S., Nishimura, N., Nishi, N. et al. (1985) Immunological activity of chitin derivatives, in Chitin in Nature and Technology, (eds R.A.A. Muzzarelli, C. Jeuniaux and G.W. Gooday), Plenum Press, New York, p. 469.

    Google Scholar 

  • No, H.K. and Meyers, S.P. (1989) Crawfish chitosan as a coagulant in recovery of organic compounds from seafood processing streams. J. Agric. Food Chem., 37, 580–583.

    Article  CAS  Google Scholar 

  • No, H.K., Meyers, S.P. and Lee, K.S. (1989) Isolation and characterization of chitin from crawfish shell waste. J. Agric. Food Chem., 37, 575–579.

    Article  CAS  Google Scholar 

  • Ornum, J.V. (1991) Chitosan, in Proceedings of the 34th Annual Conference of the Canadian Institute of Food Science Technology, Montreal, Québec, June 16-19.

    Google Scholar 

  • Papineau, A.M., Hoover, D.G., Knorr, D. and Farkas, D.F. (1991). Antimicrobial effect of water soluble chitins with high hydrostatic pressure. Food Biotechnol., 5, 47–57.

    Article  Google Scholar 

  • Peniston, Q.P. and Johnson, E.L. (1978) Process for determination of chitin in crustacean shells. US Patent 4066 735.

    Google Scholar 

  • Revah-Moiseev, S. and Carroad, P.A. (1981) Conversion of the enzymatic hydrolysate of shellfish waste chitin to single cell proteins. Biotechnol Bioeng., 23, 1067–1078.

    Article  CAS  Google Scholar 

  • Ruiz-Herrara, J. (1978) The distribution and quantitative importance of chitin in fungi, in Proceedings of the 1st International Conference on Chitin/Chitosan, (eds R.A.A. Muzzarelli and E.R. Parisen), MIT Sea Grant Program, Cambridge, MA.

    Google Scholar 

  • Ryan, W.H. and Yankowski, E.L. (1961) Photographic image-receiving material. German Patent 1 116 969.

    Google Scholar 

  • Sandford, P.A. (1989) Chitosan: commercial uses and potential applications, in Chitin and Chitosan — Sources, Chemistry, Biochemistry, Physical Properties and Applications, (eds G. Skjack-Braek, T. Anthonsen and P. Sandford), Elsevier Applied Science, London, pp. 51–69.

    Google Scholar 

  • Sapers, G.M. (1992) Chitosan enhances control of enzymatic browning in apple and pear juices by filtration. J. Food Sci., 57, 1192–1193.

    Article  CAS  Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1985) Extraction of carotenoprotein from shrimp processing offal with the aid of trypsin. J. Appl Biochem., 7, 212–222.

    CAS  Google Scholar 

  • Shimahara, K., Ohkouchi, K. and Ikeda, M. (1982) A new isolation method of crustacean chitin using proteolytic bacterium, Pseudomonas maltophilia, in Proceedings of the 2nd International Conference of the Japanese Society of Chitin and Chitosan, (eds S. Hirano and S. Tokura), Sapporo, Japan, p. 10.

    Google Scholar 

  • Shimahara, K., Takiguchi, Y., Kobayashi, T. et al. (1989) Screening of mucoraceae strains suitable for chitosan production, in Chitin and Chitosan: Sources, Chemistry, Biochemistry; Physical Properties and Applications, (eds G. Skjak-Braek, T. Anthonsen and P. Sandford), Elsevier Applied Science, London, pp. 171–178.

    Google Scholar 

  • Soto-Peralta, N.V., Miller, H. and Knorr, D. (1989) Effects of chitosan treatment on the clarity and colour of apple juice. J. Food Sci., 54, 495–496.

    Article  CAS  Google Scholar 

  • Takeda, M. and Abe, E. (1962) Isolation of crustacean chitin. Decalcification by disodium ethylenediaminetetraacetate and enzymic hydrolysis of incidental proteins. Norisho Suisan Koshusho Kenkyu Hokohu, 11, 339–345.

    Google Scholar 

  • Takeda, M. and Katsuura, H. (1964) Purification of king crab chitin. Suisan Daigaku Kenkyu Hokoku, 13, 109–116.

    CAS  Google Scholar 

  • Tracey, M.V. (1957) Chitin. Rev. Pur. Appl. Chem., 7, 1–19.

    CAS  Google Scholar 

  • Tsugita, T. (1990) Chitin/chitosan and their application, in Advances in Fisheries Technology and Biotechnology for Increased Profitability, (ed..M.N. Voigt and J.R. Botta), Technomic, Lanaster, PA, pp. 287–298.

    Google Scholar 

  • Von-Furth, O. and Russo, M. (1906) Veber Kristallinische Chitosanverbendungen aus Sepienshulpen. Ein Beitrag zur Kenntnis des Chitins. Beitr. Bhem. Physiol. Path., 8, 163–168.

    CAS  Google Scholar 

  • Watkins, T.R. and Knorr, D. (1983) In vivo dye binding of chitin and its effects on gerbil growth and gut function. Nutr. Rep. Int., 27, 189–197.

    Google Scholar 

  • Weist, J.L. and Karel, M. (1992) Development of a fluorescence sensor to monitor lipid oxidation. 1. Fluorescence spectra of chitosan powder and polyamide powder after exposure to volatile lipid oxidation products. J. Agric. Food Chem., 40, 1158–1162.

    Article  CAS  Google Scholar 

  • Whistler, R.L. and BeMiller, J.N. (1962) Chitin. J. Org. Chem., 27, 1161–1165.

    Article  Google Scholar 

  • White, S.A., Farina, P.R. and Fulton, I. (1979) Production and isolation of chitosan from Mucor rouxii. Appl Environ. Microbiol., 38, 323–328.

    CAS  Google Scholar 

  • Wu, A.C.M., and Bough, W.A. (1978) Coagulation of cheese whey solids, in Proceeding of 1st International Conference on Chitin/Chitosan, (eds R.A.A. Muzzarelli and E.R. Parisen), MIT Sea Grant Program, Cambridge, Mass, p. 88.

    Google Scholar 

  • Yanagida, T. (1985) Application of chitin and chitosan in Japan. Kokai Yokkyo Koho. JP 61/210014 A2 (801210014).

    Google Scholar 

  • Yang, T. and Zall, R.R. (1984) Chitosan membranes for reverse osmosis application. J. Food Sci., 49, 91–93.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simpson, B.K., Gagne, N., Simpson, M.V. (1994). Bioprocessing of chitin and chitosan. In: Martin, A.M. (eds) Fisheries Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5303-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5303-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7420-6

  • Online ISBN: 978-1-4615-5303-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics