Skip to main content

Graded Microstructures

  • Chapter
Functionally Graded Materials

Part of the book series: Materials Technology Series ((MTEC,volume 5))

Abstract

It is well known that microstructure plays a predominant role in determining material behavior. Materials engineers therefore seek to control microstructure through processing. Processing studies have traditionally focused on optimizing microstructural characteristics with the intent of producing a uniform microstructure throughout the material. Increasing microstructural uniformity has long been considered a fruitful means of improving properties. In contrast, FGMs are produced containing deliberate spatial nonuniformities in their microstructures. By treating microstructure as a variable that is dependent on position, different material characteristics can be incorporated in a single component. Such a component can be considered a materials system integrated at the microstructural level to achieve optimum performance in a specific application. This is what distinguishes FGMs from other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirai, T. (1996) Functional gradient materials in Materials Science and Technology, Vol.17B, Processing of Ceramics, Part 2, (ed. R.J. Brook), VCH Verlagsgesellschaft mbH, Weinheim, Germany, 293ā€“341.

    Google ScholarĀ 

  2. Mortensen, A. and Suresh, S. (1995) Functionally graded metals and metal-ceramic composites, Part 1 Processing, Int. Mater. Reviews, 40 (6), 239ā€“265.

    CASĀ  Google ScholarĀ 

  3. DeHoff, R.T. and Rhines, F.N. (ed.) (1968) Quantitative Microscopy, McGraw-Hill, New York.

    Google ScholarĀ 

  4. Underwood, E.E. (1970) Quantitative Stereology, Addison-Wesley, Reading, MA.

    Google ScholarĀ 

  5. Exner, H.E. and Hougardy, H.P. (1988) Quantitative Image Analysis of Microstructures, DGM Informationsgesellschaft mbH., Oberursel, Germany.

    Google ScholarĀ 

  6. Gurland, J. (1966) An estimate of contact and continuity of dispersions in opaque samples, Trans. AIME, 236, 642ā€“646.

    CASĀ  Google ScholarĀ 

  7. Hirano, T. et al. (1990) On the design of functionally gradient materials, in Proc. First Int. Symp. on FGMā€™90, (eds. M. Yamanouchi et al.), The Society of Non-Traditional Technology, 5ā€“10.

    Google ScholarĀ 

  8. Wakashima, K. and Tsukamoto, H. (1990) Micromechanical approach to the thermomechanics of ceramic-metal gradient materials, in Proc. First Int. Symp. on FGMā€™90, (eds. M. Yamanouchi et al.), The Society of Non-Traditional Technology, 19ā€“26.

    Google ScholarĀ 

  9. Markworth, A.J. et al. (1995) Modeling Studies Applied to Functionally Graded Materials, J. Mater. Sci., 30, 2183ā€“2193.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Suresh, S. and Mortensen, A. (1997) Functionally graded metals and metal-ceramic composites, Part II, Thermomechanical properties, International Materials Reviews, 45, 85ā€“116.

    ArticleĀ  Google ScholarĀ 

  11. Eshelby, J.D. (1957) The Determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Royal Society, Series A, A241, 376ā€“396.

    ArticleĀ  Google ScholarĀ 

  12. Weissenbek, E. et al. (1997) Elasto-plastic deformation of compositionally graded metal-ceramic composites, Acta Materialia, 45 (8), 3401ā€“3417.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Nan, C.-W. (1993) Physics of inhomogeneous inorganic materials, Progress in Materials Science, 37, 1ā€“116.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Deutscher, G. et al. (ed.) (1983) Percolation Structures and Processes, Adam Hilger, Briston, UK.

    Google ScholarĀ 

  15. Stauffer, D. (1985) Introduction to Percolation Theory, Taylor and Francis, London.

    BookĀ  Google ScholarĀ 

  16. German, R.M. (1989) Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, NJ, 253ā€“274.

    Google ScholarĀ 

  17. Cahn, J.W. (1966) A model for connectivity in multiphase structures, Acta Metall, 14, 477ā€“480.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Geiger, G.H. and Poirier, D.R. (1973) Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, 473ā€“513.

    Google ScholarĀ 

  19. Muramatsu, K. et al. (1990) Fractal analysis of the microstructural transition in P/M functionally graded materials, in Proc. First Int. Symp. on FGMā€™90, (eds. M. Yamanouchi et al.), The Society of Non-Traditional Technology, 53ā€“58.

    Google ScholarĀ 

  20. Nan, C.-W. et al. (1993) The physics of metal/ceramic functionally graded materials in Ceramic Trans., 34, Proc. Second Intā€™l. Symp. on FGMā€™92, (eds. J.B. Holt et al.), The American Ceramic Society, Westerville, OH, 75ā€“82.

    Google ScholarĀ 

  21. Watanabe, R. et al. (1995) Microstructural characterization of metal/ceramic functionally gradient materials, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 3ā€“8.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (1999). Graded Microstructures. In: Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (eds) Functionally Graded Materials. Materials Technology Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5301-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5301-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60760-8

  • Online ISBN: 978-1-4615-5301-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics