Mammalian bcl-2 family genes

  • Thomas Chittenden

Abstract

Research on the molecular action of oncogenes has often yielded important insights into key signal transduction pathways that regulate the growth of cells. The bcl-2 (for B-cell lymphoma-2) gene was originally identified as the oncogene activated by the characteristic t(14; 18) translocation in non-Hodgkin’s follicular lymphomas (Cleary et al., 1986; Tsujimoto and Croce, 1986). By contrast to many well-studied oncogenes which stimulate cell division, bcl-2 was found to promote malignancy by inhibiting apoptosis, the cell-intrinsic suicide program (Vaux et al, 1988; Hockenbery et al, 1990). The discovery of bcl-2 and its novel biological activity generated intense interest because it provided a foothold into the poorly understood and previously intractable pathway in mammalian cells that controls physiologic cell death. Furthermore, the role of activated bcl-2 in follicular lymphoma provided direct evidence that suppression of apoptosis contributes to tumourigenesis and revealed a new class of aberrant signals in cancer cells that contributes to their unrestrained proliferation.

Keywords

Estrogen Adenocarcinoma Adenoma Superoxide Carboxyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar, A.N., Borthwick, N.J., Wickremasinghe, R.G et al. (1996) Interleukin-2 receptor common γ-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur. J. Immunol. 26: 294–299.PubMedCrossRefGoogle Scholar
  2. Antonsson B., Conti F., Ciavatta, A., et al. (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277: 370–372.PubMedCrossRefGoogle Scholar
  3. Apakama I., Robinson, M.C, Walter, N.M. et al. (1996) bcl-2 expression combined with p53 protein accumulation correlates with hormone-refractory prostate cancer. Br. J. Cancer 74: 1258–1262.PubMedCrossRefGoogle Scholar
  4. Baffy G., Miyashita T., Williamson, J.R. and Reed, J.C. (1993) Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J. Biol. Chem. 268: 6511–6519.PubMedGoogle Scholar
  5. Bargou, R.C, Bommert K., Weinmann, P. et al (1995a) Induction of Bax-α precedes apoptosis in a human B lymphoma cell line: potential role of the bcl-2 gene family in surface IgM-mediated apoptosis. Eur. J. Immunol. 25: 770–775.PubMedCrossRefGoogle Scholar
  6. Bargou, R.C., Daniel, P.T., Mapara, M.Y. et al. (1995b) Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-alpha expression in tumor cells correlates with resistance towards apoptosis. Int. J. Cancer 60: 854–859.PubMedCrossRefGoogle Scholar
  7. Baserga, R. (1995) The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res. 55: 249–252.PubMedGoogle Scholar
  8. Beham A., Marin, M.C, Fernandez, A. et al. (1997) Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene 15: 2767–2772.PubMedCrossRefGoogle Scholar
  9. Berchem, G.J., Bosseler, M, Sugars, L.Y. et al. (1995) Androgens induce resistance to bcl-2-mediated apoptosis in LNCaP prostate cancer cells. Cancer Res. 55: 735–738.PubMedGoogle Scholar
  10. Blagosklonny, M.V., Giannakakou P., El-Deiry, W.S. et al. (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 57: 130–135.PubMedGoogle Scholar
  11. BlagoskIonny, M.V., Schulte T., Nguyen, P. et al. (1996) Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res. 56: 1851–1854.Google Scholar
  12. Boise, L.H., Gonzalez-Garcia M., Postema, C.E. et al. (1993) Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608.PubMedCrossRefGoogle Scholar
  13. Boise, L.H., Minn, A.J., Noel, P.J. et al. (1995) CD28 co-stimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity 3: 87–98.PubMedCrossRefGoogle Scholar
  14. Borner, C. (1996) Diminished cell proliferation associated with the death-protective activity of Bcl-2. J. Biol. Chem. 271: 12695–12698.PubMedGoogle Scholar
  15. Borner, C. Martinou I., Mattmann, C. et al. (1994) The protein bcl-2α does not require membrane attachment, but two conserved domains to suppress apoptosis. J. Cell Biol 126: 1059–1068.PubMedCrossRefGoogle Scholar
  16. Boyd, J.M, Gallo, G.J., Elangovan, B., et al (1995) Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 11: 1921–1928.PubMedGoogle Scholar
  17. Boyd, J.M, Malstrom S., Subramanian, T. et al (1994) Adenovirus E1B 19kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341–351.PubMedCrossRefGoogle Scholar
  18. Brady, H.J., Gil-Gomez G., Kirberg, J. and Berns, A.J. (1996) Bax alpha perturbs T cell development and affects cell cycle entry of T cells. EMBO J. 15: 6991–7001.PubMedGoogle Scholar
  19. Campana D., Coustan-Smith E., Manabe, A. et al (1993) Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of Bcl-2 protein. Blood 81: 1025–1031.PubMedGoogle Scholar
  20. Campos L., Rouault, J.-P., Sabido, O et al (1993) High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81: 3091–3096.PubMedGoogle Scholar
  21. Campos L., Sabido O., Rouault, J.-P., and Guyotat, D. (1994) Effects of Bcl-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 84: 595–600.PubMedGoogle Scholar
  22. Carrio R., Lopez-Hoyos M., Jimeno, J. et al (1996b) A1 demonstrates restricted tissue distribution during embryonic development and functions to protect against cell death. Am. J. Pathol 149: 2133–2142.PubMedGoogle Scholar
  23. Chang, B.S., Minn, A.J., Muchmore, S.W. et al. (1997) Identification of a novel regulatory domain in Bcl-xL and Bcl-2. EMBO J. 16: 968–977.PubMedCrossRefGoogle Scholar
  24. Chao, D.T., Linette, G.P., Boise, L.H. et al (1995) Bcl-xL and Bcl-2 repress a common pathway of cell death. J. Exp. Med. 182: 821–828.PubMedCrossRefGoogle Scholar
  25. Chen, C.-Y. and Faller, D.V. (1996) Phosphorylation of Bcl-2 protein and association with p21ras in ras-induced apoptosis. J. Biol Chem. 271: 2376–2379.PubMedCrossRefGoogle Scholar
  26. Chen G., Ray R., Dubik, D. et al (1997) The E1B 19K/Bcl-2 binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J. Exp. Med. 186: 1975–1983.PubMedCrossRefGoogle Scholar
  27. Chen, H.-M. and Boxer, L.M. (1995) II-1 binding sites are negative regulators of bcl-2 expression in pre-B cells. Mol. Cell Biol 15: 3840–3847.PubMedGoogle Scholar
  28. Chen-Levy Z., Nourse J., and Cleary, M.L. (1989) The Bcl-2 candidate proto-oncogene product is a 24-kilodalton integral membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14: 18). Mol. Cell. Biol. 9: 701–710.PubMedGoogle Scholar
  29. Cheng, E.H.-Y., Levine B., Boise, L.H. et al. (1996) Bax-independent inhibition of apoptosis by Bcl-xL. Nature 379: 554–556.PubMedCrossRefGoogle Scholar
  30. Cheng, E.H.-Y., Nicholas, J, Bellows, D.S. et al (1997) A Bcl-2 homologue encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad. Sci. USA 94: 690–694.PubMedCrossRefGoogle Scholar
  31. Cherbonnel-Lasserre C., Gauny, S. and Kronenberg, A. (1996) Suppression of apoptosis by Bcl-2 or Bcl-xL promotes susceptibility to mutagenesis. Oncogene 13: 1489–1497.PubMedGoogle Scholar
  32. Chinnaiyan, A.M., Chaudhary D., O‘Rourke, K. et al. (1997a) Role of Ced-4 in the activation of Ced-3. Nature 388: 728–729.PubMedCrossRefGoogle Scholar
  33. Chinnaiyan, A.M., O‘Rourke K., Lane, B.R. and Dixit, V.M. (1997b) Interaction of Ced-4 with Ced-3 and Ced-9: a molecular framework for cell death. Science 275: 1122–1126.PubMedCrossRefGoogle Scholar
  34. Chinnaiyan, A.M., Orth K., O‘Rourke, K. et al. (1996) Molecular ordering of the cell death pathway. Bcl-2 and Bcl-xL function upstream of the Ced-3-like apoptotic proteases. J. Biol Chem. 271: 4573–4576.PubMedCrossRefGoogle Scholar
  35. Chiou, S.-K., Tseng, C.-C, Rao, L. and White, E. (1994) Functional complementation of the adenovirus E1B 19-Kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J. Virol. 68: 6553–6566.PubMedGoogle Scholar
  36. Chittenden T., Flemington, C, Houghton, A.B. et al. (1995a) A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 14: 5589–5596.PubMedGoogle Scholar
  37. Chittenden T., Harrington, E.A., O‘Connor, R. et al (1995b) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374: 733–736.PubMedCrossRefGoogle Scholar
  38. Choi, S.S., Park, I.-C, Yun, J.W. et al (1995) A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach cancer and preferentially expressed in bone marrow. Oncogene 11: 1693–1698.PubMedGoogle Scholar
  39. Clarke, M.F., Apel, I.J., Benedict, M.A. et al (1995) A recombinant bcl-xs adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proc. Natl Acad. Sci. USA 92: 11024–11028.PubMedCrossRefGoogle Scholar
  40. Cleary M. L., Smith, S.D. and Sklar, J. (1986) Cloning and structural analysis of cDNA’s from bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14: 18) translocations. Cell 47: 19–28.PubMedCrossRefGoogle Scholar
  41. Colombel M., Symmans F., Gil, S. et al (1993) Detection of the apoptosis-suppressing oncoprotein bcl-2 in hormone-refractory human prostate cancers. Am. J. Pathol. 143: 390–400.PubMedGoogle Scholar
  42. Cory, S. (1995) Regulation of lymphocyte survival by the Bcl-2 gene family. Ann. Rev. Immunol. 13: 513–543.CrossRefGoogle Scholar
  43. Cotter, F.E., Johnson P., Hall, P. et al. (1994) Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 9: 3049–3055.PubMedGoogle Scholar
  44. Cruz-Reyes, J. and Tata, J.R. (1995) Cloning, characterization and expression of two Xenopus bcl-2-like cell-survival genes. Gene 158: 171–179.PubMedCrossRefGoogle Scholar
  45. Datta S., Dudek H., Tao, X. et al (1997) Akt phosphorylation of Bad couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.PubMedCrossRefGoogle Scholar
  46. del Peso L., Gonzalez-Garcia, M, Page, C. et al. (1997) Interleukin-3-induced phosphorylation of Bad through the protein kinase Akt. Science 278: 687–689.PubMedCrossRefGoogle Scholar
  47. Diaz, J.-L., Oltersdorf T., Haorne, W. et al. (1997) A common binding site mediates heterodimerization and homodimerization of Bcl-2 family members. J. Biol. Chem. 272: 11350–11355.PubMedCrossRefGoogle Scholar
  48. Dole, M.G., Jasty R., Cooper, M.J. et al. (1995) Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res. 55: 2576–2582.PubMedGoogle Scholar
  49. Dorai T., Olsson, C.A., Katz, A.E. and Buttyan, R. (1997) Development of a hammerhead ribozyme against bcl-2. I. Preliminary evaluation of a potential gene therapeutic agent for hormone-refractory human prostate cancer. Prostate 32: 246–258.PubMedCrossRefGoogle Scholar
  50. Elangovan, B. and Chinnadurai, G. (1997) Functional dissection of the pro-apoptotic protein Bik. J. Biol. Chem. 272: 24494–24498.PubMedCrossRefGoogle Scholar
  51. Evan, G.I., Wyllie, A.H., Gilbert, C.S. et al. (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.PubMedCrossRefGoogle Scholar
  52. Fanidi A., Harrington, E.A. and Evan, G. (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359: 554–556.PubMedCrossRefGoogle Scholar
  53. Farrow, S.N., White, J.H.M., Martinou, I. et al. (1995) Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K. Nature 374: 731–733.PubMedCrossRefGoogle Scholar
  54. Fernanadez-Sarabia, M.J. and Bischoff, J.R. (1993) Bcl-2 associates with the ras-related protein R-ras p23. Nature 366: 274–275.CrossRefGoogle Scholar
  55. Foreman, K.E., Wrone-Smith T., Boise, L.H. et al. (1996) Kaposi’s sarcoma tumor cells preferentially express Bcl-xL. Am. J. Pathol 149: 795–803.PubMedGoogle Scholar
  56. Frisch, S.M. and Francis, H. (1994) Disruption of epithelial cell-matrix interactions induce apoptosis. J. Cell Biol. 124: 619–626.PubMedCrossRefGoogle Scholar
  57. Gibson L., Holmgreen, S.P., Huang, D.C. et al. (1996) bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene 13: 665–675.PubMedGoogle Scholar
  58. Gillet G., Guerin, M, Trembleau A., and Brun, G. (1995) A Bcl-2-related gene is activated in avian cells transformed by the Rous sarcoma virus. EMBO J. 14: 1372–1381.PubMedGoogle Scholar
  59. Gonzalez-Garcia M., Perez-Ballestero R., Ding, L. et al. (1994) Bcl-xL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 120: 3033–3042.PubMedGoogle Scholar
  60. Grillot, D.A.M., Gonzalez-Garcia M., Ekhterae, D. et al. (1997) Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene. J. Immunol. 158: 4750–4757.PubMedGoogle Scholar
  61. Grimes, H.L., Gilks, C.B., Chan, T.O. et al. (1996) The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death. Proc. Natl Acad. Sci. USA 93: 14569–14573.PubMedCrossRefGoogle Scholar
  62. Guan, R.J., Moss, S.F., Arber, N. et al. (1996) 30 KDa phosphorylated form of Bcl-2 protein in human colon. Oncogene 12: 2605–2609.PubMedGoogle Scholar
  63. Haldar S., Basu, A. and Croce, C.M. (1997) Bcl-2 is the guardian of microtubule integrity. Cancer Res. 57: 229–233.PubMedGoogle Scholar
  64. Haldar S., Chintapalli, J. and Croce, C.M. (1996) Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56: 1253–1255.PubMedGoogle Scholar
  65. Haldar S., Jena, N. and Croce, C.M. (1995) Inactivation of Bcl-2 by phosphorylation. Proc. Natl. Acad. Sci. USA 92: 4507–4511.PubMedCrossRefGoogle Scholar
  66. Han J., Sabbatini P., Perez, D. et al (1996a) The Elb 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Gen. Dev. 10: 461–477.CrossRefGoogle Scholar
  67. Han J., Sabbatini, P. and White, E. (1996b) Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with Elb 19kD. Mol. Cell Biol, 16: 5857–5864.PubMedGoogle Scholar
  68. Hanada, M, Aime-Sempe, C, Sato, T. and Reed, J.C. (1995) Structure-function analysis of Bcl-2 protein. J. Biol. Chem. 270: 11962–11969.PubMedCrossRefGoogle Scholar
  69. Hanada, M, Delia D., Aiello, A. et al. (1993) Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82: 1820–1828.PubMedGoogle Scholar
  70. Harigai M., Miyashita T., Hanada, M. and Reed, J.C. (1996) A cis-acting element in the bcl-2 gene controls expression through translational mechanisms. Oncogene 12: 369–374.Google Scholar
  71. Harrington, E.A., Bennett, M.R., Fanidi A., and Evan, G.I. (1994) c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13: 3286–3295.PubMedGoogle Scholar
  72. Hawkins, C.J. and Vaux, D.L. (1997) The role of the Bcl-2 family of apoptosis regulatory proteins in the immune system. Semin. Immunol. 9: 25–33.PubMedCrossRefGoogle Scholar
  73. Heckman, C, Mochon E., Arcinas, M. and Boxer, L.M. (1997) The WT1 protein is a negative regulator of the normal bcl-2 allele in t(14;18) lymphomas. J. Biol.Chem. 272: 19609–19614.PubMedCrossRefGoogle Scholar
  74. Heiden, M.G.V., Chandel, N.S., Williamson, E.K. et al. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627–637.CrossRefGoogle Scholar
  75. Henderson S., Huen D., Rowe, M. et al. (1993) Epstein-Barr virus BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl Acad. Sci. USA. 90: 8479–8488.PubMedCrossRefGoogle Scholar
  76. Hengartner, M.O. and Horvitz, H.R. (1994) C. elegans cell survival gene ced-9 encodes a functional homologue of the mammalian proto-oncogene bcl-2. Cell 76: 665–676.PubMedCrossRefGoogle Scholar
  77. Hermine O., Haioun, C, Lepage, E. et al. (1996) Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Blood 87: 265–272.PubMedGoogle Scholar
  78. Hewitt, S.M., Hamada S., McDonnell, T.J. et al. (1995) Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’s tumor suppressor gene WT1. Cancer Res. 55: 5386–5389.PubMedGoogle Scholar
  79. Hill, M.E., MacLennan, K.A., Cunningham, D.C. et al. (1996) Prognostic significance of Bcl-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a British National lymphoma investigation study. Blood 88: 1046–1051.PubMedGoogle Scholar
  80. Hockenbery D., Nunez G., Milliman, C. et al. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336.PubMedCrossRefGoogle Scholar
  81. Hockenbery, D.M., Oltvai, Z.N., Yin, X. et al. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251.PubMedCrossRefGoogle Scholar
  82. Hohfeld, J. and Jentsch, S. (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein Bag-1. EMBO J. 16: 6209–6216.PubMedCrossRefGoogle Scholar
  83. Horiuchi, M, Hayashida W., Kambe T. et al. (1997) Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J. Biol. Chem. 272: 19022–19026.PubMedCrossRefGoogle Scholar
  84. Hsu, S.Y., Kaipia A., McGee, E. et al. (1997) Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc. Natl Acad. Sci. USA 94: 12401–12406.PubMedCrossRefGoogle Scholar
  85. Huang, D.C.S., Cory, S. and Strasser, A. (1997a) Bcl-2, Bcl-xL and adenovirus E1B19kD are functionally equivalent in their ability to inhibit cell death. Oncogene 14: 405–414.PubMedCrossRefGoogle Scholar
  86. Huang, D.C.S., O’Reilly, L.A., Strasser, A. and Cory, S. (1997b) The anti-apoptotic function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J. 16: 4628–4638.PubMedCrossRefGoogle Scholar
  87. Hunter, J.J. (1996) A peptide sequence from Bax that converts Bcl-2 into an activator of apoptosis. J. Biol. Chem. 271: 8521–8524.PubMedCrossRefGoogle Scholar
  88. Hunter, J.J., Bond, B.L. and Parslow, T.G. (1996) Functional dissection of the human Bcl2 protein: sequence requirements for inhibition of apoptosis. Mol. Cell. Biol. 16: 877–883.PubMedGoogle Scholar
  89. Ink B., Zörnig M., Baum, B. et al. (1997) Human Bak induces cell death in Schizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells. Mol. Cell. Biol. 17: 2468–2474.PubMedGoogle Scholar
  90. Inohara N., Ding L., Chen, S. and Nunez, G. (1997) harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-XL. EMBO J. 16: 1686–1694.PubMedCrossRefGoogle Scholar
  91. Ito T., Deng X., Carr, B. and May, W.S. (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J. Biol Chem. 272: 11671–11673.PubMedCrossRefGoogle Scholar
  92. Iwahashi H., Eguchi Y., Yasuhara, N. et al. (1997) Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Nature 390: 413–417.PubMedCrossRefGoogle Scholar
  93. Jacobson, M.D. and Raff, M.C. (1995) Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374: 814–816.PubMedCrossRefGoogle Scholar
  94. James, C, Gschmeissner S., Fraser, A. and Evan, G.I. (1997) CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr. Biol. 7: 246–252.PubMedCrossRefGoogle Scholar
  95. Joensuu H., Pylkkanen, L. and Toikkanen, S. (1994) Bcl-2 protein expression and long-term survival in breast cancer. Am. J. Pathol. 145: 1191–1198.PubMedGoogle Scholar
  96. Jurgensmeier, J.M., Krajewski S., Armstrong, R.C. et al. (1997) Bax-and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 8: 325–339.PubMedGoogle Scholar
  97. Kallakury, B.V.S., Figge J., Leibovich, B. et al. (1996) Increased bcl-2 protein levels in prostatic adenocarcinomas are not associated with rearrangements in the 2.8 kb major breakpoint region or with p53 protein accumulation. Mod. Pathol 9: 41–47.PubMedGoogle Scholar
  98. Kane, D.J., Sarafian, T.A., Anton, R. et al. (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277.PubMedCrossRefGoogle Scholar
  99. Karsan A., Yee, E. and Harlan, J.M. (1996a) Endothelial cell death induced by Tumor Necrosis Factor-alpha is inhibited by the Bcl-2 family member, Al. J. Biol. Chem. 271: 27201–27204.PubMedCrossRefGoogle Scholar
  100. Karsan A., Yee E., Kaushansky, K. and Harlan, J.M. (1996b) Cloning of a human Bcl-2 homologue: Inflammatory cytokines induce human A1 in cultured endothelial cells. Blood 87: 3089–3096.PubMedGoogle Scholar
  101. Keith, F.J., Bradbury, D.A., Zhu, Y.-M, and Russell, N.H. (1995) Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 9: 131–138.PubMedGoogle Scholar
  102. Kelekar A., Chang, B.S., Harlan, J E. et al. (1997) Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-xL. Mol. Cell. Biol. 17: 7040–7046.PubMedGoogle Scholar
  103. Kenny, J.J., Knobloch, T.J., Augustus, M. et al. (1997) GRS, a novel member of the Bcl-2 gene family, is highly expressed in multiple cancer cell lines and in normal leukocytes. Oncogene 14: 997–1001.PubMedCrossRefGoogle Scholar
  104. Kharbanda S., Pandey P., Schofield, L. et al. (1997) Role for Bcl-xL as an inhibitor of cytosolic cytochrome c accumulation in DNA damage-induced apoptosis. Proc. Natl. Acad. Sci. USA 94: 6939–6942.PubMedCrossRefGoogle Scholar
  105. Kiefer, M.C, Brauer, M.J., Powers, V.C. et al. (1995) Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374: 736–739.PubMedCrossRefGoogle Scholar
  106. Kitada S., Krajewski S., Miyashita, T. et al. (1996) γ-Radiation induces upregulation of Bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 12: 187–192.PubMedGoogle Scholar
  107. Kitada S., Takayama S., Riel, K.D. et al. (1994) Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res. Dev. 4: 71–79.PubMedGoogle Scholar
  108. Kluck, R.M., Bossy-Wetzel, E.B., Green, D.R. and Newmeyer, D.D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136.PubMedCrossRefGoogle Scholar
  109. Knudson, C.M, Tung, K.S.K., Tourtellotte, W.G. et al. (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96–99.PubMedCrossRefGoogle Scholar
  110. Knudson, G.M. and Korsmeyer, S.J. (1997) Bcl-2 and Bax function independently to regulate cell death. Nat. Genet. 16: 358–363.PubMedCrossRefGoogle Scholar
  111. Kondo S., Shinomura Y., Kanayama, S. et al. (1996) Over-expression of bcl-xL gene in human gastric adenomas and carcinomas. Int. J. Cancer 68: 727–730.PubMedCrossRefGoogle Scholar
  112. Kozopas, K.M., Yang T., Buchan, H.L. et al. (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. USA. 90: 3516–3520.PubMedCrossRefGoogle Scholar
  113. Krajewska, M, Moss, S.F., Krajewski, S. et al. (1996) Elevated expression of Bcl-x and reduced Bak in primary colorectal adenocarcinomas. Cancer Res. 56: 2422–2427.PubMedGoogle Scholar
  114. Krajewski S., Blomqvist, C, Franssila, K. et al. (1995a) Reduced expression of proapoptotic gene Bax is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 55: 4471–4478.PubMedGoogle Scholar
  115. Krajewski S., Bodrug, S., Krajewska, M. et al. (1995b) Immunohistochemical analysis of Mcl-1 protein in human tissues. Am. J. Pathol. 146: 1309–1319.PubMedGoogle Scholar
  116. Krajewski S., Krajewska, M. and Reed, J.C. (1996) lmmunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 56: 2849–2855.PubMedGoogle Scholar
  117. Krajewski S., Krajewska M., Shabaik, A. et al. (1994) lmmunohistochemical analysis of in vivo patterns of Bcl-x expression. Cancer Res. 54: 5501–5507.PubMedGoogle Scholar
  118. Krajewski S., Mai, J.K., Krajewska, M. et al. (1995c) Upregulation of Bax protein levels in neurons following cerebral ischemia. J. Neurosci. 15: 6364–6376.PubMedGoogle Scholar
  119. Krajewski S., Tanaka S., Takayama, S. et al. (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53: 4701–4714.PubMedGoogle Scholar
  120. Krajewski S., Thor, A.D., Edgerton, S.M. et al. (1997) Analysis of Bax and Bcl-2 expression in p53-immunopositive breast cancers. Clin. Cancer Res. 3: 199–208.PubMedGoogle Scholar
  121. Kramer, M.H.H., Hermans J., Parker, J. et al. (1996) Clinical significance of bcl-2 and p53 protein expression in diffuse large B-cell lymphoma: a population-based study. J. Clin. Oncol. 14: 2131–2138.PubMedGoogle Scholar
  122. Kroemer G., Zamzami, N. and Susin, S.A. (1997) Mitochondrial control of apoptosis. Immunol. Today 18: 44–51.PubMedCrossRefGoogle Scholar
  123. Lam M., Dubyak G., Chen, L. et al. (1994) Evidence that Bcl-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc. Natl. Acad. Sci. USA 91: 6569–6573.PubMedCrossRefGoogle Scholar
  124. Leek, R.D., Kaklamanis L., Pezzella, F. et al. (1994) bcl-2 in normal human breast and carcinoma, association with estrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br. J. Cancer 69: 135–139.PubMedCrossRefGoogle Scholar
  125. Li P., Nijhawan D., Budihardjo, I. et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489.PubMedCrossRefGoogle Scholar
  126. Lin, E.Y., Orlofsky A., Berger, M.S. and Prystowsky, M.B. (1993) Characterization of Al, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2. J. Immunol. 151: 1979–1988.PubMedGoogle Scholar
  127. Lin, E.Y., Orlofsky A., Wang, H.-G. et al. (1996) Al, a bcl-2 family member, prolongs cell survival and permits myeloid differentiation. Blood 87: 983–992.PubMedGoogle Scholar
  128. Linette, G.P., Li Y., Roth, K. and Korsmeyer, S. J. (1996) Cross talk between cell death and cell cycle progression: Bcl-2 regulates NFAT-mediated activation. Proc. Natl. Acad. Sci. USA 93: 9545–9552.PubMedCrossRefGoogle Scholar
  129. Liu X., Kim, C.N., Yang, J. et al. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.PubMedCrossRefGoogle Scholar
  130. Lomo J., Blomhoff, H.K., Jacobsen, S.E. et al. (1997) Interleukin-13 in combination with CD40 ligand potently inhibits apoptosis in human B lymphocytes: upregulation of Bcl-xL and Mcl-1. Blood 89: 4415–4424.PubMedGoogle Scholar
  131. Longo, V.D., Ellerby, L.M., Bredesen, D.E. et al. (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J. Cell Biol. 137: 1581–1588.PubMedCrossRefGoogle Scholar
  132. Lu, Q-L., Abel P., Foster, C.S., and Lalani, E-N. (1996) bcl-2: role in epithelial differentiation and oncogenesis. Hum. Pathol 27: 102–110.PubMedCrossRefGoogle Scholar
  133. Mangeney M., Schmitt, J.-R., Leverrier, Y. et al. (1996) The product of the v-src-inducible gene nr-13 is a potent anti-apoptotic factor. Oncogene 13: 1441–1446.PubMedGoogle Scholar
  134. Manon S., Chaudhuri, B. and Guerin, M. (1997) Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by co-expression of Bcl-xL. FEBS Lett. 415: 29–32.PubMedCrossRefGoogle Scholar
  135. Marchetti P., Castedo M., Susin, S.A. et al. (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med. 184: 1155–1160.PubMedCrossRefGoogle Scholar
  136. Marin, M.C, Fernandez A., Bick. R.J. et al. (1996) Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca2+. Oncogene 12: 2259–2266.PubMedGoogle Scholar
  137. Marvel J., Perkins, G.R., Rivas, A.L. and Collins, M.K.L. (1994) Growth factor starvation of bcl-2 overexpressing murine bone marrow cells induced refractoriness to IL-3 stimulation of proliferation. Oncogene 9: 1117–1122.PubMedGoogle Scholar
  138. Matolcsy A., Casali P., Warnke, R.A. and Knowles, D.M. (1996) Morphologic transformation of follicular lymphoma is associated with somatic mutation of the translocated Bcl-2 gene. Blood 88: 3937–3944.PubMedGoogle Scholar
  139. Maundrell K., Antonsson B., Magnenat, E. et al. (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Racl. J. Biol. Chem. 272: 25238–25242.PubMedCrossRefGoogle Scholar
  140. Maung, Z.T., MacLean, F.R., Reid, M.M. et al. (1994) The relationship between bcl-2 expression and response to chemotherapy in acute leukemia. Br. J. Heamatol. 88: 105–109.CrossRefGoogle Scholar
  141. May, W.S., Tyler, P.G., Ito, T. et al. (1994) Interleukin-3 and Bryostatin-1 mediate hyperphosphorylation of Bcl2α in association with suppression of apoptosis. J. Biol. Chem. 269: 26865–26870.PubMedGoogle Scholar
  142. Mazel S., Burtrum, D. and Petrie, H.T. (1996) Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J. Exp. Med. 183: 2219–2226.PubMedCrossRefGoogle Scholar
  143. McConkey, D.J., Chandra J., Wright, S. et al. (1996) Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of Bcl-2 and Bax. J. Immunol. 156: 2624–2630.PubMedGoogle Scholar
  144. McCurrach, M.E., Connor, T.M.F., Knudson, C.M. et al. (1997) Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94: 2345–2349.PubMedCrossRefGoogle Scholar
  145. McDonnell, T.J. and Korsmeyer, S.J. (1991) Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 349: 254–256.PubMedCrossRefGoogle Scholar
  146. McDonnell, T.J., Troncoso P., Brisbay, S.M. et al. (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Research 52: 6940–6944.PubMedGoogle Scholar
  147. Meijerink, J.P., Smetsers, T.R, Sloetjes, A.W. et al. (1995) Bax mutations in cell lines derived from hematological malignancies. Leukemia 9: 1828–1832.PubMedGoogle Scholar
  148. Merry, D.E. and Korsmeyer, S.J. (1997) Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20: 245–267.PubMedCrossRefGoogle Scholar
  149. Middleton G., Nunez, G. and Davies, A.M. (1996) Bax promotes neuronal survival and antagonises the survival effects of neurotrophic factors. Development 122: 695–701.PubMedGoogle Scholar
  150. Minn, A.J., Velez P., Schendel, S.L. et al. (1997) Bcl-xL forms an ion channel in synthetic lipid membranes. Nature 385: 353–357.PubMedCrossRefGoogle Scholar
  151. Miyashita T., Harigai M., Hanada, M. and Reed, J.C. (1994a) Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 54: 3131–3135.PubMedGoogle Scholar
  152. Miyashita T., Krajewski S., Krajewska, M. et al. (1994b) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805.PubMedGoogle Scholar
  153. Miyashita, T. and Reed, J.C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human Bax gene. Cell 80: 293–299.PubMedCrossRefGoogle Scholar
  154. Motoyama N., Wang F., Roth, K.A. et al. (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267: 1506–1510.PubMedCrossRefGoogle Scholar
  155. Muchmore, S.W., Sattler M., Liang, H. et al. (1996) X-ray and NMR structure of human BCL-xL, an inhibitor of programmed cell death. Nature 381: 335–341.PubMedCrossRefGoogle Scholar
  156. Naik P., Karrim, J. and Hanahan, D. (1996) The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes and Development 10: 2105–2116.PubMedCrossRefGoogle Scholar
  157. Naumovski, L. and Cleary M. L. (1996) The p53-binding protein 53BP2 also interacts with Bcl-2 and impedes cell cycle progression at G2/M. Mol. Cell. Biol. 16: 3884–3892.PubMedGoogle Scholar
  158. Nava, V.E., Cheng, E.H-Y., Veliuona, M. et al. (1997) Herpesvirus saimiri encodes a functional homologue of the human bcl-2 oncogene. J. Virol. 71: 4118–4122.PubMedGoogle Scholar
  159. Ng, F.W.H., Nguyen M., Kwan, T. et al. (1997) p28 Bap31, a Bcl-2/Bcl-xL-and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell. Biol. 139: 327–338.PubMedCrossRefGoogle Scholar
  160. Nguyen. M., Branton, P.E., Walton, P.A. et al. (1994) Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J. Biol. Chem. 269: 16521–16524.PubMedGoogle Scholar
  161. Nguyen M., Millar, D.G., Yong, V.W. et al. (1993) Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J. Biol. Chem. 268: 25265–25268.PubMedGoogle Scholar
  162. O‘Connor L., Strasser A., O‘Reilly, L.A. et al. (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17: 384–395.PubMedCrossRefGoogle Scholar
  163. Ohr K., Iwai K., Kasahara, Y. et al. (1995) Immunoblot analysis of cellular expression of Bcl-2 family proteins, Bcl-2, Bax, Bcl-x and Mcl-1, in human peripheral blood and lymphoid tissues. Int. Immunol. 7: 1817–1825.CrossRefGoogle Scholar
  164. Olivier R., Otter I., Monney, L. et al. (1997) Bcl-2 does not require Raf kinase activity for its death-protective function. Biochem. J. 324: 75–83.PubMedGoogle Scholar
  165. Olopade, O.I., Adeyanju, M.O., Safa, A.R. et al. (1997) Overexpression of Bcl-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer J. 3: 230–237.Google Scholar
  166. Oltvai, Z.N. and Korsmeyer, S.J. (1994) Checkpoints of dueling dimers foil death wishes. Cell 79: 189–192.PubMedCrossRefGoogle Scholar
  167. Oltvai, Z.N., Milliman, C.L. and Korsmeyer, S.J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homologue, Bax, that accelerates programmed cell death. Cell 74: 609–619.PubMedCrossRefGoogle Scholar
  168. Ottilie S., Diaz, J-L., Chang, J. et al. (1997a) Structural and functional complementation of an inactive Bcl-2 mutant by Bax truncation. J. Biol. Chem. 272: 16955–16961.PubMedCrossRefGoogle Scholar
  169. Ottilie S., Diaz, J.-L., Horne, W. et al. (1997b) Dimerization properties of human Bad. J. Biol. Chem. 272: 30866–30872.PubMedCrossRefGoogle Scholar
  170. Parrizas, M. and Leroith, D. (1997) Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology 138: 1355–1358.PubMedCrossRefGoogle Scholar
  171. Pepper, C, Bentley, P. and Hoy, T. (1996) Regulation of clinical chemoresistance by bcl-2 and bax oncoproteins in B-cell chronic lymphocytic leukaemia. Br. J. Hematol. 95: 513–517.CrossRefGoogle Scholar
  172. Petit, P.X., Susin, S-A., Zamzami, N. et al. (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett. 396: 7–13.PubMedCrossRefGoogle Scholar
  173. Pezzella F., Turley H., Kuzu, I. et al. (1993) bcl-2 protein in non-small-cell lung carcinoma. N. Engl. J. Med. 329: 690–694.PubMedCrossRefGoogle Scholar
  174. Raffo, A.J., Perlman H., Chen, M-W. et al. (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 55: 4438–4445.PubMedGoogle Scholar
  175. Rampino N., Yamamoto H., Ionov, Y. et al. (1997) Somatic frameshift mutations in the Bax gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.PubMedCrossRefGoogle Scholar
  176. Reed, J.C. (1994) Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124: 1–6.PubMedCrossRefGoogle Scholar
  177. Reed, J.C, Miyashita T., Takayama, S. et al. (1996) Bcl-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell Biochem. 60: 23–32.PubMedCrossRefGoogle Scholar
  178. Reed, J.C, Stein, C, Subasinghe, C. et al. (1990) Antisense inhibition of Bcl-2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res. 50: 6565–6570.PubMedGoogle Scholar
  179. Reed, J.C. and Tanaka, S. (1993) Somatic point mutations in the translocated bcl-2 genes of non-Hodgkin’s lymphomas and lymphocytic leukemias: implications for mechanisms of tumor progression. Leuk. Lymphoma 10: 157–163.PubMedCrossRefGoogle Scholar
  180. Reynolds, J.E., Li J., Craig, R.W. and Eastman, A. (1996) Bcl-2 and Mcl-1 expression in Chinese hamster ovary cells inhibits intracellular acidification and apoptosis induced by staurosporine. Exp. Cell Res. 225: 430–436.PubMedCrossRefGoogle Scholar
  181. Robertson, L.E., Plunkett W., McConnell, K. et al. (1996) Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia 10: 456–459.PubMedGoogle Scholar
  182. Ryan, J.J., Prochownik E., Gottlieb, C.A. et al. (1994) c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle. Proc. Natl. Acad. Sci. 91: 5878–5882.PubMedCrossRefGoogle Scholar
  183. Salomons, G.S., Brady, H.J.M, Verwijs-Janssen, M. et al. (1997) The Baxoc: Bcl-2 ratio modulates the response to dexamethasone in leukemic cells and is highly variable in childhood acute leukemia. Int. J. Cancer 71: 959–965.PubMedCrossRefGoogle Scholar
  184. Sarid R., Sato T., Bohenzky, R.A. et al. (1997) Kaposi’s sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue. Nature Med. 3: 293–298.PubMedCrossRefGoogle Scholar
  185. Sato T., Hanada M., Bodrug, S. et al. (1994) Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc. Natl. Acad. Sci. USA. 91: 9238–9242.PubMedCrossRefGoogle Scholar
  186. Sattler M., Liang H., Nettesheim, D. et al. (1997) Structure of BCL-XL-Bak peptide complex: recognition between regulators of apoptosis. Science 275: 983–986.PubMedCrossRefGoogle Scholar
  187. Schendel, S.L., Xie Z., Montal, M.O. et al. (1997) Channel formation by antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci USA. 94: 5113–5118.PubMedCrossRefGoogle Scholar
  188. Schlesinger, P.H., Gross A., Yin, X-M. et al. (1997) Comparison of the ion channel characteristics of proapoptotic Bax and antiapoptotic Bcl-2. Proc. Natl. Acad. Sci. USA 94: 11357–11362.PubMedCrossRefGoogle Scholar
  189. Sedlak, T.W., Oltvai, Z.N., Yang, E. et al. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. USA. 92: 7834–7838.PubMedCrossRefGoogle Scholar
  190. Sentman, C.L., Shutter, J.R., Hockenbery, D. et al. (1991) Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell, 67: 879–888.PubMedCrossRefGoogle Scholar
  191. Seshagiri, S. and Miller, L.K. (1997) Caenorhabditis elegans Ced-4 stimulates Ced-3 processing and Ced-3-induced apoptosis. Curr. Biol. 7: 455–460.PubMedCrossRefGoogle Scholar
  192. Seto M., Jaeger U., Hockett, R.D. et al. (1988) Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J. 7: 123–131.PubMedGoogle Scholar
  193. Shibasaki F., Kondo E., Akagi, T. and McKeon, F. (1997) Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature 386: 728–731.PubMedCrossRefGoogle Scholar
  194. Shimizu S., Eguchi Y., Kamiike, W. et al. (1996) Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene 12: 2251–2257.PubMedGoogle Scholar
  195. Shimizu S., Eguchi Y., Kosaka, H. et al. (1995) Prevention of hypoxia-induced cell death by Bcl-2 and Bcl- xL. Nature 374: 811–813.PubMedCrossRefGoogle Scholar
  196. Silva M., Grillot D., Benito, A. et al. (1996) Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-xL and Bcl-2. Blood 88: 1576–1582.PubMedGoogle Scholar
  197. Silvestrini R., Veneroni S., Daidone, M.G. et al. (1994) The Bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J. Natl. Cancer Inst. 86: 499–504.PubMedCrossRefGoogle Scholar
  198. Simonian, P.L., Grillot, D.A.M., Merino, R. and Nunez, G. (1996) Bax can antagonize BCL-XL during etoposide and cisplatin-induced cell death independently of its heterodimerization with Bcl-xL. J. Biol Chem. 271: 22764–22772.PubMedCrossRefGoogle Scholar
  199. Simonian, P.L., Grillot, D.A.M. and Nunez, G. (1997) Bak can accelerate chemotherapy-induced cell death independently of its heterodimerization with Bcl-xL and Bcl-2. Oncogene 15: 1871–1875.PubMedCrossRefGoogle Scholar
  200. Singleton, J.R., Dixit, V.M. and Feldman, E. (1996) Type I insulin-like growth factor receptor activation regulates apoptotic proteins. J. Biol Chem. 271: 31791–31794.PubMedCrossRefGoogle Scholar
  201. Spector, M.S., Desnoyers S., Hoeppner, D.J. and Hengartner, M.O. (1997) Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385: 653–656.PubMedCrossRefGoogle Scholar
  202. Stoetzer, O.J., Niissler V., Darsow, M. et al. (1996) Association of bcl-2, bax, bcl-xL and interleukin-1-B-converting enzyme expression with initial response to chemotherapy in acute myeloid leukemia. Leukemia 10: Suppl. 3 S18–S22.PubMedGoogle Scholar
  203. Strasser A., Harris, A.W., Bath, M.L. and Cory, S. (1990) Novel primitive lymphoid tumors induced in transgenic mice by cooperation between myc and bcl-2. Nature 348: 331–333.PubMedCrossRefGoogle Scholar
  204. Strobel T., Swanson L., Korsmeyer, S. and Cannistra, S.A. (1996) Bax enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc. Natl. Acad. Sci. USA 93: 14094–14099.PubMedCrossRefGoogle Scholar
  205. Susin, S.A., Zamzami N., Castedo, M. et al. (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184: 1331–1341.PubMedCrossRefGoogle Scholar
  206. Takayama S., Bimston, D.N., Matsuzawa, S. et al. (1997) Bag-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16: 4887–4896.PubMedCrossRefGoogle Scholar
  207. Takayama S., Sato T., Krajewski, S. et al. (1995) Cloning and functional analysis of BAG-1: A novel Bcl-2-binding protein with anti-cell death activity. Cell 80: 279–284.PubMedCrossRefGoogle Scholar
  208. Tanaka S., Louie, D.C, Kant, J.A. and Reed, J.C. (1992) Frequent incidence of somatic mutations in translocated Bcl-2 oncogenes of non-Hodgkin’s lymphomas. Blood 79: 229–237.PubMedGoogle Scholar
  209. Tanaka S., Saito, K. and Reed, J.C. (1993) Structure-function analysis of the bcl-2 oncoprotein. J. Biol Chem. 268: 10920–10926.PubMedGoogle Scholar
  210. Tao W., Kurschner, C. and Morgan, J.I. (1997) Modulation of cell death in yeast by the Bcl-2 family of proteins. J. Biol Chem. 272: 15547–15552.PubMedCrossRefGoogle Scholar
  211. Thomas A., Rouby, S.E., Reed, J.C. et al. (1996) Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene 12: 1055–1062.PubMedGoogle Scholar
  212. Tsujimoto, Y. and Croce, C.M. (1986) Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl Acad. Sci. USA. 83: 5214–5218.PubMedCrossRefGoogle Scholar
  213. Vairo G., Innes, K.M. and Adams, J.M. (1996) Bcl-2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene 13: 1511–1519.PubMedGoogle Scholar
  214. Vaux, D.L., Corey, S. and Adams, J.M. (1988) Bcl-2 promotes the survival of haemopoietic cells and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442.PubMedCrossRefGoogle Scholar
  215. Veis, D.J., Sorenson, C.M., Shutter J.R. and Korsmeyer, S.J. (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75: 229–240.PubMedCrossRefGoogle Scholar
  216. Wagener C., Bargou, R.C., Daniel, P.T. et al. (1996) Induction of the death-promoting gene bax-α sensitizes cultured breast-cancer cells to drug-induced apoptosis. Int. J. Cancer 67: 138–141.PubMedCrossRefGoogle Scholar
  217. Wang, H-G., Rapp, U.R. and Reed, J.C. (1996a) Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87: 629–638.PubMedCrossRefGoogle Scholar
  218. Wang, H-G., Takayama S., Rapp, U.R. and Reed, J.C. (1996b) Bcl-2 interacting protein, Bag-1, binds to and activates the kinase Raf-1. Proc. Natl. Acad. Sci. 93: 7063–7068.PubMedCrossRefGoogle Scholar
  219. Wang, H-G., Miyashita T., Takayama, S. et al. (1994) Apoptosis regulation by interaction of Bcl-2 protein and Raf-1 kinase. Oncogene 9: 2751–2756.PubMedGoogle Scholar
  220. Wang K., Yin M., Chao, D.T. et al. (1996c) BID: a novel BH3 domain-only death agonist. Gen. Dev. 10: 2859–2869.CrossRefGoogle Scholar
  221. Webb A., Cunningham D., Cotter, F. et al. (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. The Lancet 349: 1137–1141.CrossRefGoogle Scholar
  222. Werner, H. and LeRoith, D. (1996) The role of the insulin-like growth factor system in human cancer. Ad. in Cancer Res. 68: 183–223.CrossRefGoogle Scholar
  223. Wilson, B.E., Mochon, E. and Boxer, L.M. (1996) Induction of bcl-2 expression by phophorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol. 16: 5546–5556.PubMedGoogle Scholar
  224. Wu D., Wallen, H.D., Inohara, N. and Nunez, G. (1997a) Interaction and regulation of the Caenorhabditis elegans death protease Ced-3 by Ced-4 and Ced-9. J. Biol Chem. 272: 21449–21454.PubMedCrossRefGoogle Scholar
  225. Wu D., Wallen, H.D. and Nunez, G. (1997b) Interaction and regulation of subcellular localization of Ced-4 by Ced-9. Science 215: 1126–1129.CrossRefGoogle Scholar
  226. Xiang J., Chao, D.T. and Korsmeyer, S.J. (1996) Bax-induced cell death may not require intereukin IB-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93: 14559–14563.PubMedCrossRefGoogle Scholar
  227. Yamamoto H., Sawai, H. and Perucho, M. (1997) Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 57: 4420–4426.PubMedGoogle Scholar
  228. Yang, E. and Korsmeyer, S.J. (1996) Molecular thanatopsis: a discourse on the Bcl-2 family and cell death. Blood 88: 386–401.PubMedGoogle Scholar
  229. Yang E., Zha J., Jockel, J. et al. (1995) Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promotes cell death. Cell 80: 285–291.PubMedCrossRefGoogle Scholar
  230. Yang J., Liu X., Bhalla, K. et al. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129–1132.PubMedCrossRefGoogle Scholar
  231. Yang T., Kozopas, K.M. and Craig, R.W. (1995b) The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J. CellBiol 128: 1173–1184.CrossRefGoogle Scholar
  232. Yin, C, Knudson, C.M., Korsmeyer, S.J. and Van Dyke, T.V. (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640.PubMedCrossRefGoogle Scholar
  233. Yin, X-M., Oltvai, Z.N. and Korsmeyer, S.J. (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369: 321–323.PubMedCrossRefGoogle Scholar
  234. Young, R.L. and Korsmeyer, S.J. (1993) A negative regulatory element in the bcl-2 5’-untranslated region inhibits expression from an upstream promoter. Mol. Cell. Biol. 13: 3686–3697.PubMedGoogle Scholar
  235. Zha H., Aimé-Sempé, C, Sato, T. and Reed, J.C. (1996a) Proapoptotic protein Bax heterodimerizes with and Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J. Biol. Chem. 271: 7440–7444.PubMedCrossRefGoogle Scholar
  236. Zha H., Fisk, H.A., Yaffe, M.P. et al. (1996b) Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. Biol. 16: 6494–6508.PubMedGoogle Scholar
  237. Zha J., Harada H., Osipov, K. et al (1997) BH3 domain of Bad is required for heterodimerization with Bcl-XL and pro-apoptotic activity. J. Biol. Chem. 272: 24101–24104.PubMedCrossRefGoogle Scholar
  238. Zha J., Harada H., Wang, E. et al. (1996c) Serine phosphorylation of death agonist Bad in response to survival factor results in binding to 14-3-3 not Bcl-xL. Cell 87: 619–628.PubMedCrossRefGoogle Scholar
  239. Zhan Q., Fan S., Bae, I. et al. (1994) Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene 9: 3743–3751.PubMedGoogle Scholar
  240. Zhou P., Qian L., Kozopas, K.M. and Craig. R.W. (1997) Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89: 630–643.PubMedGoogle Scholar
  241. Zhu W., Cowie A., Wasfy, G.W. et al. (1996) Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J. 15: 4130–4141.PubMedGoogle Scholar
  242. Ziegler A., Luedke, G.H., Fabbro, D. et al. (1997) Induction of apoptosis in small-cell lung cancer cellsby an antisense oligonucleotide targeting the Bcl-2 coding sequence. J. Natl. Cancer Inst. 89: 1027–1036.PubMedCrossRefGoogle Scholar
  243. Zou H., Henzel, W.J., Liu, X. et al. (1997) Apaf-1, a human protein homologous to C. elegans Ced-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Thomas Chittenden
    • 1
  1. 1.Apoptosis Technology Inc.CambridgeUSA

Personalised recommendations