Skip to main content

Wavelength Translators

  • Chapter
  • 223 Accesses

Part of the book series: Telecommunication Technology and Applications Series ((TTAP))

Abstract

Wavelength division multiplexing (WDM) techniques offer a very effective utilisation of the fiber bandwidth directly in the wavelength domain, rather than in the time domain. In addition, wavelength can be used to perform functions such as routing and switching [1], allowing the realisation of an all-optical transparent layer in the network [2]. The number of allowed wavelengths in WDM networks determines the number of independent wavelength addresses, or paths. Although this number may be large enough to fulfil the required information capacity, it is often insufficient to support a large number of nodes. Then the blocking probability rises due to possible wavelength contention when two channels, at the same wavelength, are to be routed to the same output. One method to overcome this limitation is to convert signals from one wavelength to another.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.R. Hillet al.A transport network layer based on optical network elements, IEEE/OSAJ. Lightwave Technol. 11667–679 (1993).

    Article  Google Scholar 

  2. A. Watanabe, S. Okamoto, and K. Sato, Optical path cross-connect node architecture with high modularity for photonic transport networksIEEE Trans. on Commun. E77B, 1220–1229 (1994).

    Google Scholar 

  3. S.J.B. Yoo, Wavelength conversion technologies for WDM network applicationsIEEE J. Lightwave Technol. 14, 955–966 (1996).

    Article  Google Scholar 

  4. M. Schiesset al.Pulse shape evolution and noise estimates in concatenated fiber links using analog optoelectronical repeaters,IEEE J. Lightwave Technol. 141621–1629 (1996).

    Article  Google Scholar 

  5. R. Sabella, M. Avattaneo, and E. Iannone, Impact of non-regenerative opto-electronic wavelength converters on the transmission performance of all-optical networksMicrowave Opt. Technol. Lett.November (1997).

    Google Scholar 

  6. K.E. Stubkiaeret al.Optical wavelength converters, inProc. ECOC’94Florence, Italy, pp. 635–642 (1994).

    Google Scholar 

  7. P. Doussiereet al. 1.55 µm polarization independent semiconductor optical amplifier 25 dB fiber to fiber gain,IEEE Photon. Technol. Lett. 6170–172 (1994).

    Article  Google Scholar 

  8. G.P. Agrawal and N.A. Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiersIEEE J. Quantum Electron. 25, 2297–2306 (1989).

    Article  Google Scholar 

  9. E. Iannone, R. Sabella, L. de Stefano, and F. Valeri, All-optical wavelength conversion in optical multicarrier networksIEEE Trans. on Commun. 44, 716–724 (1996).

    Article  Google Scholar 

  10. D.M. Patrick and R.J. Manning, 20 Gb/s wavelength conversion using semiconductor nonlinearityElectron. Lett. 30, 252–253 (1994).

    Article  Google Scholar 

  11. M. Eiselt, W. Pieper, and H.G. Weber, Decision gate for all-optical data retiming using a semiconductor laser amplifier in a loop mirror configurationElectron. Lett. 29, 107–109 (1993).

    Article  Google Scholar 

  12. T. Durhuuset al.All optical wavelength conversion by SOA’s in a MachZehnder configuration,IEEE Photon. Technol. Lett. 653–55 (1994).

    Article  Google Scholar 

  13. B. Mikkelsenet al.Polarization insensitive wavelength conversion of 10 Gb/s signals with SOA’s in a Michelson interferometer,Electron. Lett. 30260–261 (1994).

    Article  Google Scholar 

  14. T. Durhuuset al.2.5 Gb/s optical gating with high on/off ratio by use of SOA’s in Mach-Zehnder interferometers, inProc. CLEO ‘83Baltimore, MD, paper CThH3 (1993).

    Google Scholar 

  15. T. Durhuuset al.All-optical wavelength conversion by semiconductor optical amplifiers,IEEE/OSA J. Lightwave Technol. 14942–954 (1996).

    Article  Google Scholar 

  16. G.P. Agrawal, Population pulsations and non-degenerate four-wave mixing in semiconductor lasers and amplifiersJ. Opt. Soc. Amer. B 5, no. 1, pp.147–158, 1988.

    Article  Google Scholar 

  17. K. Kikuchi, M. Kakui, C. Zah, and T.P. Lee, Observation of highly nondegenerate four-wave mixing in 1.5 mm travelling wave semiconductor optical amplifiers and estimation of nonlinear gain coefficientIEEE J. Quantum Electron. 28, 151–156 (1992).

    Article  Google Scholar 

  18. M. Willatzenet al.Nonlinear gain suppression in semiconductor laser due to carrier heating,IEEE Photon. Technol. Lett. 3, (1991).

    Google Scholar 

  19. L.F. Tiemeijer, Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifierAppl. Phys. Lett.59, 499–501 (1991).

    Article  Google Scholar 

  20. J. Zhou, N. Park, J.W. Dawson, and K.J. Vahala, Highly nondegenerate four-wave mixing and gain nonlinearity in a strained multiple-quantum-well optical amplifierAppl. Phys. Lett. 62, 2301–2303 (1993).

    Article  Google Scholar 

  21. S. Murataet al.Observation of highly nondegenerate four-wave mixing (> 1 THz)in an InGaAsP multiple quantum-well laser,Appl. Phys. Leu. 581458–1460 (1991).

    Article  MathSciNet  Google Scholar 

  22. A. D’Ottaviet al.Four wave mixing investigation of carrier heating and spectral hole burning in semiconductor amplifiers,Appl. Phys. Leu. 642492–2494 (1994).

    Article  Google Scholar 

  23. M.C. Tatham, G. Sherlock, and L.D. Westbrook, Compensation of fibre chromatic dispersion by mid-way spectral inversion in a semiconductor laser amplifierProc. ECOC ‘83Montreaux, paper Th12.3 (1993).

    Google Scholar 

  24. K. Kikuchi and C. Lorattanasane, Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugatorIEEE Photon. Technol. Lett. 6, 104–105 (1994).

    Article  Google Scholar 

  25. A. D’Ottaviet al.Efficiency and Noise Performances of Wavelength Converters Based on FWM in Semiconductor Optical Amplifiers,IEEE-Photon. Technol. Lett. 7357–359 (1995).

    Article  Google Scholar 

  26. A. Mecozziet al.Four wave mixing in travelling wave semiconductor amplifiers,IEEE J. Quantum Electron. 31689–699 (1995).

    Article  Google Scholar 

  27. S. Scotti and A. Mecozzi, Frequency converters based on FWM in travelling-wave optical amplifiers: theoretical aspectsFiber and Integrated Optics15, 243–256 (1996).

    Article  Google Scholar 

  28. G.P. Bava, P. Debernardi, and G. Osella, Frequency conversion in travelling wave semiconductor laser amplifiers with bulk and quantum-well structuresIEE Proc. Optoelectron. 141: 119–125 (1994).

    Article  Google Scholar 

  29. M. Uskov, J. MØrk, and Mark, Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral hole burningIEEE J. Quantum Electron. 30, 1769–1781 (1994).

    Article  Google Scholar 

  30. A. Mecozzi, Analytical theory of four-wave mixing in semiconductor amplifiersOpt. Lett19, 892–894 (1994).

    Article  Google Scholar 

  31. A. YarivQuantum Electronics3rd ed., John Wiley, New York (1989).

    Google Scholar 

  32. G.P. Agrawal and N.K. DuttaLong-Wavelength Semiconductor LasersCh. 6,Van Nostrand Reinold, New York (1986).

    Book  Google Scholar 

  33. R. Hui and A. Mecozzi, Phase noise of four wave mixing of semiconductor lasersAppl. Phys. Leu. 60, 2454–2456 (1992).

    Article  Google Scholar 

  34. R. Ludwiget al.Four-wave mixing in semiconductor laser amplifiers: applications for opticl communication systems,Fiber and Integrated Optics 15211–223 (1996).

    Article  Google Scholar 

  35. R. Ludwig and G. Raybon, BER measurements of frequency converted signals using four-wave mixing in a semiconductor laser amplifier at 1, 2.5, 5 and 10 Gb/sElectron. Lett. 30, 338–339 (1994).

    Article  Google Scholar 

  36. P. Spano (ed.), Frequency conversion in WDM optical networks: an overview of the european researchFiber and Integrated Optics15, no. 3 (1996).

    Google Scholar 

  37. S.J.B. Yoo, Wavelength conversion technologies for WDM network applicationsIEEE/OSA J. Lightwave Technol. 14, 955–966 (1996).

    Article  Google Scholar 

  38. S.J.B. Yooet. al.Wavelength conversion by difference frequency generation in A1GaAs waveguides with periodic domain inversion achieved by wafer bonding,Appl. Phys. Lett. 682601–2611 (1996).

    Google Scholar 

  39. S.J.B. Yoo and K. Bala, Parametric wavelength conversion and cross-connect architecture for transparent all-optical networks, in Proc.SPIE ‘86Boston, pp. 2919–20 (1196)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sabella, R., Lugli, P. (1999). Wavelength Translators. In: High Speed Optical Communications. Telecommunication Technology and Applications Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5275-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5275-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7406-0

  • Online ISBN: 978-1-4615-5275-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics