Optical Networking Devices

  • R. Sabella
  • P. Lugli
Part of the Telecommunication Technology and Applications Series book series (TTAP)


The technology discussed so far relates to devices useful for optical communication links. The realisation of optical networking elements requires other devices such as optical couplers, multiplexers and demultiplexers, optical filters, and key elements for optical switching such as optical space switching matrices. They are considered here with particular reference to wavelength division multiplexing (WDM) elements.


Surface Acoustic Wave Wavelength Division Multiplex Optical Filter Semiconductor Optical Amplifier Free Spectral Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. O’Mahony, Wavelength/optical frequency division multiplexing, inHigh Capacity optical transmissions explainedEd. by D.M. Spirit and M.J. O’Mahony, John Wiley, New York (1995).Google Scholar
  2. 2.
    P.A. Humblet, and W.M. Hamdy, Crosstalk analysis and filter optimization of single-and double cavity Fabry-Perot filtersIEEE J. on Select. Areas on Comm. 81095–1107 (1990).CrossRefGoogle Scholar
  3. 3.
    G. HernandezFabry-Perot Interferometers.Cambridge University Press, Cambridge (1986).Google Scholar
  4. 4.
    A. Yariv and P. YehOptical Waves in CrystalsJohn Wiley, New York (1984).Google Scholar
  5. 5.
    K.W. Cheung, Acoustooptic tunable filters in narrowband WDM networks: system issues and network applicationsJ. Select. Areas in Commun. 81015–1025 (1990).CrossRefGoogle Scholar
  6. 6.
    H. Hermann, D.A. Smith, and W. Sohler, Integrated optical, acoustically tunable wavelength filters and switches and their network applications, inProc. Eur. Conf. Integrated Optics (ECIO ‘83)Neuchâtel, Switzerland, pp.101–103 (1993).Google Scholar
  7. 7.
    F. Tianet al.Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3 IEEE/OSA J. Lightwave Technol. 12 1192–1197 (1994).CrossRefGoogle Scholar
  8. 8.
    J.L. Jackel, J.E. Baran, A. D’Alessandro, and D.A. Smith, A passband-flattened acousto-optic filterIEEE Photon. Technol. Lett. 7318–320 (1995).CrossRefGoogle Scholar
  9. 9.
    D.A. Smith and Z. Bao, Technology and applications of the integrated acousto-optic filterMELECON’96Bari, Italy, pp. 100–107 (1996).Google Scholar
  10. 10.
    D.A. Smith et al., ‘Evolution of the acousto-optic wavelength routing switch’, IEEE J. Lightwave Technol., vol. 14, no. 6, pp. 1005–1019, 1996.CrossRefGoogle Scholar
  11. 11.
    F. Wehrmannet al.Fully packaged, integrated optical, acoustically tunable add-drop multiplexers in LiNbO3 in Proceding of the European Conference on Integrated Optics (ECIO ‘85) Delft, The Netherlands, pp. 487–490 (1995).Google Scholar
  12. 12.
    F. Wehrmann et al., Integrated optical, wavelength selective, acoustically tunable 2 x 2 switches (add-drop multiplexers) in LiNbO3 IEEE J. Select. Topics in Quantum Electron. 2263–269 (1996).CrossRefGoogle Scholar
  13. 13.
    O. Sahlén, ActiveDBRfilters for 2.5-Gb/s operation: linewidth, crosstalk, noise, and saturation propertiesIEEE/OSA J. Lightwave Technol.,101631–1643 (1992).CrossRefGoogle Scholar
  14. 14.
    N. Takatoet al.Silica-based single-mode waveguides on Silicon and their application to guided-wave optical interferometers,IEEE/OSA J. Lightwave Technol. 6 1003–1009 (1988).CrossRefGoogle Scholar
  15. 15.
    S. Valetteet al.Si-based integrated optics technologies,Solid State Technol.69–75 (1989).Google Scholar
  16. 16.
    P. Granestrandet al.Strictly nonblocking 8 x 8 integrated optical switch matrix,Electron. Lett. 22 816–818 (1986).CrossRefGoogle Scholar
  17. 17.
    M. Jansonet al.Monolithically integrated 2 x 2 InGaAsP/InP laser amplifier gate switch arrays,Electron. Lett. 28 776–777 (1992).CrossRefGoogle Scholar
  18. 18.
    Y. Yamadaet al.Hybrid-integrated 4 x 4 optical gate matrix switch using silica-based optical waveguidesIEEE/OSA J. Lightwave Technol. LT10 383–390 (1992).CrossRefGoogle Scholar
  19. 19.
    M. Gustayssonet al.Monolithically integrated 4 x 4 InGaAsP/InP laser amplifier gate switch arrays,Electron. Lett. 28 2223–2224 (1992).CrossRefGoogle Scholar
  20. 20.
    M. Gustaysson, M. Janson, and L. Lundgren, Digital transmission experiments with monolithic 4 x 4 InGaAsP/InP laser amplifier gate switch arrayElectron. Lett. 291083–1084 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • R. Sabella
    • 1
  • P. Lugli
    • 2
  1. 1.Ericsson Telecommunicazioni, R&DItaly
  2. 2.Dipartimento di ElettronicaUniversita di RomaRomeItaly

Personalised recommendations