A Fuzzy Modal Logic for Similarity Reasoning

  • Lluís Godo
  • Ricardo O. Rodríguez
Part of the The International Series on Asian Studies in Computer and Information Science book series (ASIS, volume 6)


In this paper we are concerned with the formalization of a similarity-based type of reasoning dealing with expressions of the form approximately ϕ, where ϕis a fuzzy proposition. From a technical point of view we need a fuzzy logic as base logic to deal with the fuzziness of propositions and also we need a modality to account for the notion of approximation or closeness. Therefore we propose a modal fuzzy logic with semantics based on Kripke structures where the accessibility relations are fuzzy similarity relations measuring how similar are the possible worlds.


Similarity-based reasoning fuzzy logic modal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dubois, Didier; Prade, Henri. Similarity-based approximate reasoning. Irit/94-10-r, Institut de Recherche en Informatique de Toulouse, 1994.Google Scholar
  2. Dubois, Didier; Prade, Henri. Comparison of two fuzzy set-based logics: similarity logic and posibilistic logic. In FUZZ-IEEE’;95, Yokohama, Japan, 1995. IEEE Press, 1319–1326.Google Scholar
  3. Esteva, F.; Garcia, P.; Godo, L.; RodráDguez, R. A modal account of similarity-based reasoning. International Journal of Approximate Reasoning, 1997, 16(3/4): 312–344.Google Scholar
  4. Fitting, Melvin. Many-valued modal logics. Fundamenta Informaticae, 1991, 15:235–254.MathSciNetzbMATHGoogle Scholar
  5. Melvin, Fitting, Many-valued modal logics (II). Fundamenta Informaticae, 1992, 17:55–73.MathSciNetzbMATHGoogle Scholar
  6. Gabay, D. M.; How to make your logic fuzzy (fibred semantic and weaving of logics, part 3. In Fuzzy Set, Logics, and Artificial Intelligence, D. Dubois, E. P. Klement, and H. Prade, editors, Linz, Austria, 1996 February. Fuzzy Logic Laboratorium Linz-Hagenberg. Austria, 69-89.Google Scholar
  7. Gabay, D. M.; Fibring, labelling. Two methods for making modal logic fuzzy. In M. Mares, R. Mesiar, V. Novak, J. Ramík, Stupnanová A. editors, IFSA’97. Seventh International Fuzzy Systems Association World Congress, volume 1, Prague.Czech Republic, 1997 June, University of Economics., Academia, Prague.Google Scholar
  8. Hajek, Petr. Fuzzy logic and arithmetical hierarchy. Fuzzy Sets and Systems, 1995, (73):359–363. Note.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Hajek, Petr. Metamathematics of FuzzyLlogic. Kluwer, 1rt. edition, 1998.Google Scholar
  10. Hajek, Petr. Harmancová Dagmar, A many-valued modal logic. IPMU’;96, Granada, Spain, 1996, 1021–1024.Google Scholar
  11. Klawonn, F.; Castro, J. L. Similarity in fuzzy reasoning. Mathware & Soft Computing, 1995, (2): 197–228.MathSciNetzbMATHGoogle Scholar
  12. Liau, Churn J. Logics with semantics based on rough set theory. Proc. of IPMU’98, Paris, France, 1998 July, (long version of the paper, submitted).Google Scholar
  13. Niiniluoto, Ilkka. Truthlikeness volume 185 of Synthese Library. D.Reidel Publishing Company, 1rt. edition, 1987.Google Scholar
  14. De Rijke, Maarten; Venema, Yde. Sahlqvist’s theorem for boolean algebras with operators with an application to cylindric algebras. Studia Logica, 1995, 54:61–78.zbMATHGoogle Scholar
  15. Van Benthem, Johan. Correspondence theory. In Handbook of Philosophical Logic. Extensions of Classical Logic D. Gabbay and F. Guenthner, editors, volume II, Kluwer, 1984, 167–248.Google Scholar
  16. Ying, Ming-Sheng. On standard models of fuzzy modal logics. Fuzzy Set and Systems, 1988, 26:357–363.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Lluís Godo
    • 1
  • Ricardo O. Rodríguez
    • 2
  1. 1.Campus Univ. Autònoma BarcelonaInstitut d’lnvestigació en Intel.ligència Artificial (IIIA) — CSICSpain
  2. 2.Dpto. de Computación Fac. Ciencias Exactas y NaturalesUniversidad de Buenos Aires Ciudad de Buenos AiresArgentina

Personalised recommendations