Filamentous fungi as production organisms for glycoproteins of bio-medical interest

  • Marleen Maras
  • Irma van Die
  • Roland Contreras
  • Cees A. M. J. J. van den Hondel

Abstract

Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20-40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but research is in progress to increase the production levels. In the past years the structure of protein-linked carbohydrates of a number of fungal proteins has been elucidated, showing the presence of oligo-mannosidic and high-mannose chains, sometimes with typical fungal modifications. A start has been made to engineer the glycosylation pathway in filamentous fungi to obtain strains that show a more mammalian-like type of glycosylation. This mini review aims to cover the current knowledge of glycosylation in filamentous fungi, and to show the possibilities to produce glycoproteins with these organisms with a more mammalian-like type of glycosylation for research purposes or pharmaceutical applications

Keywords

filamentous fungi homologous and heterologous protein secretion N-glycosylation 0-glycosylation Phosphorylation protein-linked carbohydrates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Varki A (1993) Glycobiology 3: 97–130.PubMedCrossRefGoogle Scholar
  2. 2.
    Cumming DA (1991) Glycobiology 1: 115–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Olijve W, de Boer W, Mulders JW, Van Wezenbeek PM (1996) Mol Human Reprod 2: 371–82.CrossRefGoogle Scholar
  4. 4.
    Sasaki H, Bothner B, Dell A, Fukuda M (1987) J Biol Chem 262: 12059–76.PubMedGoogle Scholar
  5. 5.
    Altmann F (1997) Glycoconj J 14: 643–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Hsu TA, Takahashi N, Tsukamoto Y, Kato K, Shimada I, Masuda K, Whiteley EM, Fan JQ, Lee YC, Betenbaugh MJ (1997) J Biol Chem 272: 9062–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Davidson DJ, Castellino FJ (1991) Biochemistry 30: 6167–74.CrossRefGoogle Scholar
  8. 8.
    Davidson DJ, Castellino FJ (1991) Biochemistry 30: 6689–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Davidson DJ, Fraser MJ, Castellino FJ (1990) Biochemistry 29: 5584–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Tucker GA, Woods LFJ, eds (1995) Enzymes in Food Processing (2nd ed). London: Blackie.CrossRefGoogle Scholar
  11. 11.
    Finkelstein DB, Rambosek J, Crawford MS, Soliday CL, Mc Ada PC, Leach J (1989) In Genetics and Molecular Biology of Industrial Microorganisms (Hershberger Cl, Queener SW, Hegemann G, eds) pp 295–300 Washington DC: American Society for MicrobiologyGoogle Scholar
  12. 12.
    Verdoes, JC, Punt PJ, Van den Hondel CAMJJ (1995) Appl Microbiol Biotechnol 43: 195–205.CrossRefGoogle Scholar
  13. 13.
    Jeenes DJ, Mackenzie DA, Roberts IN, Archer DB (1991) Biotechn Genet Eng Rev 9: 327–67.Google Scholar
  14. 14.
    Van den Hondel CAMJJ, Punt PJ, van Gorcom RFM (1991) In More Gene Manipulation in Fungi (Bennett JW, Lasure LL, eds), p 396. New York: Academic Press.Google Scholar
  15. 15.
    Gwynne DJ, Devchand M (1992). In Aspergillus, the Biology and Industrial Application (Bennet JW, Klich MA, eds) pp 203–14. London: Butterworth.Google Scholar
  16. 16.
    Gouka RJ, Punt PJ, Van den Hondel CAMJJ (1997) Appl and Environmental Microbiol 63: 488–97.Google Scholar
  17. 17.
    Gouka RJ, Punt PJ, Hessing JGM, Van den Hondel CAMJJ (1996). Appl Environ Microbiol 62: 195–205.Google Scholar
  18. 18.
    Nyyssonen E, Keranen S (1995) Curr Genet 28: 71–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Gouka RJ, Punt PJ, Van den Hondel CAMJJ (1997) Appl Microbiol Biotechnol 47: 1–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Broekhuijsen MP, Mattem IE, Contreras R, Kinghorn JR, Van den Hondel CAMJJ (1993) J Biotech 31: 135–45.CrossRefGoogle Scholar
  21. 21.
    Van Hartingsveldt W, Van Zeijl CMJ, Veenstra AE, Van den Berg JA, Pouwels PH, Van Gorcom RFM, Van den Hondel CAMJJ (1990) In Proceedings of 6th International Symposium on Genetics of Industrial Microorganisms (Heslot H, Davies J, Florent J, Bibichon L, Durant G, Penasse L, eds). p 107, Société Française de Microbiologie.Google Scholar
  22. 22.
    Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Summer IG, Archer DB (1992) Gene 122: 155–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Archer DB, Peberdy JF (1997) Crit Rev Biotechn 17: 273–306.CrossRefGoogle Scholar
  24. 24.
    Dunn-Coleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R, Wilson Lj, Kodama KH, Baliu EF, Bower B, Lamsa M, Heinsohn H (1991) Biotechnology 9: 976–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Ward PP, Piddington CS, Cunningham GA, Zhou X, Wyatt RD, Conneely OM (1995) Biotechnology 13: 498–503.PubMedCrossRefGoogle Scholar
  26. 26.
    Civas A, Eberhard R, Le Dizet P, Petek F (1984) Biochem J 219: 857–63.PubMedGoogle Scholar
  27. 27.
    Kobata A, Amano J (1987) Meth Enzymol 138: 779–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Gaikwad SM, Keskar SS, Khan MI (1995) Biochim Biophys Acta 1250: 144–48.PubMedCrossRefGoogle Scholar
  29. 29.
    Eades CJ, Gilbert A, Goodman CD, Hintz WE (1998) Glycobiology 8: 17–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Luonteri E, Tenkanen M, Viikari L (1998) Enzyme Microb Technol 22: 192–98.PubMedCrossRefGoogle Scholar
  31. 31.
    Eneyskaya EV, Kulminskaya AA, Savel’ev AN, Shabalin KA, Golubev AM, Neustroev KN (1998) Biochem Biophys Res Commun 245: 43–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Palamarczyk G, Maras M, Contreras R and Kruzewska J (1998) In Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications (Harman GE, Kubicek CP, eds) vol. 1, pp 121–33. London: Taylor and Francis LtdGoogle Scholar
  33. 33.
    Aleshin AE, Hoffman C, Firsov LM, Honzatko RB (1994) J Mol Biol 238: 575–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Yoshida T, Ichishima E (1995) Biochim Biophys Acta 1263: 159–162.PubMedCrossRefGoogle Scholar
  35. 35.
    Inoue T, Yoshida T, Ichishima E (1995) Biochim Biophys Acta 1253: 141–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Goto M, Ekino K, Furukawa K (1997) Appl Envir Microbiol 63: 2940–43.Google Scholar
  37. 37.
    Devchand M, Gwynne DI (1991) J Biotechnology 17: 3–10.CrossRefGoogle Scholar
  38. 38.
    Ftouhi-Paquin N, Hauer CR, Stack RF, Tarentino AL, Plummer TH Jr (1997) J Biol Chem 272: 22960–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Klarskov K, Piens K, Stahlberg J, Hoj PB, Beeumen JV, Claeyssens M (1997) Carbohydr Res 304: 143–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Ear J Biochem 256: 119–27.CrossRefGoogle Scholar
  41. 41.
    Silberstein S, Gilmore R (1996) FASEB J 10: 849–58.PubMedGoogle Scholar
  42. 42.
    Nakao Y, Kozutsumi Y, Funakoshi I, Kawasaki T, Yamashina I, Mutsaers JHGM, Van Halbeek H, Vliegenthart JFG (1987) J Biochem 102: 171–79.PubMedGoogle Scholar
  43. 43.
    Maras M, De Bruyn A, Schraml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R (1997) Eur J Biochem 245: 617–25.PubMedCrossRefGoogle Scholar
  44. 44.
    De Bruyn A, Maras M, Schraml J, Herdewijn P, Contreras R (1997) FEBS Lett 405: 111–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Hashimoto C, Cohen RE, Zhang WJ, Ballou CE (1981) Proc Natl Acad Sci USA 78: 2244–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Hernandez LM, Ballou L, Alvarado E, Tsai P, Ballou CE (1989) J Biol Chem 264: 13648–59.PubMedGoogle Scholar
  47. 47.
    Ballou L, Hernandez LM, Alvarado E, Ballou CE (1990) Proc Natl Acad Sci USA 87: 3368–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Hernandez LM, Olivero I, Alvarado E, Larriba G (1992) Biochemistry 31: 9823–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Jars MU, Osborn S, Forstrom J, MacKay VL (1995) J Biol Chem 270: 24810–17.PubMedCrossRefGoogle Scholar
  50. 50.
    Takayanagi T, Kushida K, Idonuma K, Ajisaka K (1992) Glycoconj J 9: 229–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Takayanagi T, Kimura A, Chiba S, Ajisaka K (1994) Carbohydrate Res 256: 149–58.CrossRefGoogle Scholar
  52. 52.
    Groisman JF, de Lederkremer RM (1987) Ear J Biochem 165: 327–32.CrossRefGoogle Scholar
  53. 53.
    Ohta M, Emi S, Iwamoto H, Hirose J, Hiromi K, Itoh H, Shin T, Murao S, Matsuura F (1996) Biosci Biotech Biochem 60: 1123–30.CrossRefGoogle Scholar
  54. 54.
    Goto M, Kuwano E, Kanlayakrit W, Hayashida S (1995) Biosci Biotechnol Biochem 1: 16–20.CrossRefGoogle Scholar
  55. 55.
    Chen J, Saxton J, Hemming FW, Peberdy JF (1996) Biochim Biophys Acta 1296: 207–18.CrossRefGoogle Scholar
  56. 56.
    Takegawa K, Kondo A, Iwamoto H, Fujiwara K, Hosokawa Y, Kato I, Hiromi K, Iwahara S (1991) Biochem Int 25: 181–90.PubMedGoogle Scholar
  57. 57.
    Yang Y, Bergmann C, Benen J, Orlando R (1997) Rapid Comm Mass Spectr 11: 1257–62.CrossRefGoogle Scholar
  58. 58.
    Panchal T, Wodzinski RJ (1998) Prep Biochem Biotech 28: 201–7.CrossRefGoogle Scholar
  59. 59.
    Salovuori I, Makarow M, Rauvala H, Knowles J, Ktitiriiinen L (1987) Biotechnology 5: 152–56.CrossRefGoogle Scholar
  60. 60.
    Goochee CF, Monica T (1990) Biotechnology 8: 421–27.PubMedCrossRefGoogle Scholar
  61. 61.
    Gum EK Jr, Brown RD Jr (1976) Biochim Biophys Acta 446: 371–86.PubMedCrossRefGoogle Scholar
  62. 62.
    Gunnarsson A, Svensson B, Nilsson B, Svensson S (1984) Ear J Biochem 145: 463–67.CrossRefGoogle Scholar
  63. 63.
    Goto M, Kuwano E, Kanlayakrit W, Hayashida S (1995) Biosci Biotech Biochem 59: 16–20.CrossRefGoogle Scholar
  64. 64.
    Murakami K, Takeuchi K, Beppu T, Horinouchi S (1998) Microbiology 144: 1369–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Murakami K, Aikawa J, Horinouchi S, Beppu T (1993) Mol Gen Genet 241: 312–18.PubMedCrossRefGoogle Scholar
  66. 66.
    Chiba Y, Yamagata Y, Iijima S, Nakajima T, Ichishima E (1993) Curr Microbiol 27: 281–88.PubMedCrossRefGoogle Scholar
  67. 67.
    Morkeberg R, Carlsen M, Nielsen J (1995) Microbiology 141: 2449–54.PubMedCrossRefGoogle Scholar
  68. 68.
    Jarvis DL, Summers MD (1989) Mol Cell Biol 9: 214–23.PubMedGoogle Scholar
  69. 69.
    Neustroev KN, Golubev AM, Firsov LM, Ibatullin FM, Protasevich II, Makarov AA (1993) FEBS Lett 316: 157–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Opdenakker G, Rudd PM, Ponting CP, Dwek RA (1993) FASEB J 7: 1330–37.PubMedGoogle Scholar
  71. 71.
    Wang C, Eufemi M, Turano C, Giartosio A (1996) Biochemistry 35: 7299–307.PubMedCrossRefGoogle Scholar
  72. 72.
    Jenkins N, Parekh RB, James DC (1996) Nature Biotechnology 14: 975–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Maras M, Saelens X, Laroy W, Piens K, Claeyssens M, Fiers W, Contreras R (1997) Eur J Biochem 249: 701–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Vella GJ, Paulsen H, Schachter H (1983) Can J Biochem Cell Biol 62: 409–17.CrossRefGoogle Scholar
  75. 75.
    Kalsner I, Hintz W, Reid LS, Schachter H (1995) Glycoconjugate J 12: 360–70.CrossRefGoogle Scholar
  76. 76.
    Herscovics A, Orlean P (1993) FASEB J 7: 540–50.PubMedGoogle Scholar
  77. 77.
    Kruszewska J, Kubicek CP, Palamarczyk G (1994) Acta Biochim Pol 41: 331–37.PubMedGoogle Scholar
  78. 78.
    Zimmerman JW, Specht CA, Xoconostle Cazares B, Robbins PW (1996) Yeast 12: 765–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Kruszewska JS, Saloheimo M, Penttila M, Palamarczyk G (1998) Curr Genet 33: 445–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Ashwell G, Harford J (1982) Anna Rev Biochem 51: 531–54.CrossRefGoogle Scholar
  81. 81.
    Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL (1991) J Biol Chem 266: 14869–72.PubMedGoogle Scholar
  82. 82.
    Nyyssonen E, Penttila M, Harkki A, Saloheimo A, Knowles JK, Keranen S (1993) Biotechnology 11: 591–95.PubMedCrossRefGoogle Scholar
  83. 83.
    Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT (1998) Res Immunol 149: 589–99.PubMedCrossRefGoogle Scholar
  84. 84.
    Honda G, Matsuda A, Zushi M, Yamamoto S, Komatsu K (1997) Biosci Biotech Biochem 61: 948–55.CrossRefGoogle Scholar
  85. 85.
    Yamaguchi H, Ikenaka T, Matsushima Y (1971) J Biochem 70: 587–94.PubMedGoogle Scholar
  86. 86.
    Limongi P, Kjalke M, Vind J, Tams JW, Johansson T, Welinder, KG (1995) Eur J Biochem 227: 270–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Marleen Maras
    • 1
  • Irma van Die
    • 2
  • Roland Contreras
    • 1
  • Cees A. M. J. J. van den Hondel
    • 3
  1. 1.Department of Molecular BiologyUniversiteit GentGentBelgium
  2. 2.Department of Medical ChemistryVrije UniversiteitAmsterdamThe Netherlands
  3. 3.Department of Molecular Genetics and GenetechnologyTNO Nutrition and Food Research InstituteZeistThe Netherlands

Personalised recommendations