Mercury Cadmium Telluride (Hg1-xCdxTe)

  • Sadao Adachi


Hg1-xCd x Te is one of the Hg-based IIb–VIb semiconductor alloys crystallizing in the zinc-blende structure over the entire composition range (0≤x≤1.0). The fundamental optical absorption edge of Hg1-xCd x Te can be tuned by about 2 eV, running at 300 K from 1.49 eV (1.53 eV) for CdTe to -0.14 eV (-0.12 eV) for HgTe with an inverted Γ8–Γ6 ordering [1] ([2]). Among the Hg-based semiconductor alloys, Hg1-xCd x Te is the most extensively studied alloy system because it has proved to be useful as a material for high-performance photoconductive and photovoltaic IR detectors [3,4].


Mercury Cadmium Telluride Entire Composition Range Semiconductor Alloy Infrared Phys Optical Absorption Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. L. Hansen, J. L. Schmit, and T. N. Casselman, J, Appl. Phys. 53, 7099 (1982).CrossRefGoogle Scholar
  2. 2.
    J. P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, and A. Lus-son, J. Appl. Phys. 67, 6454 (1990).CrossRefGoogle Scholar
  3. 3.
    C. T. Elliott, in Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series No. 10, edited by P. Capper (INSPEC (IEE), London, 1994), p. 311.Google Scholar
  4. 4.
    I. M. Baker, in Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series No. 10, edited by P. Capper (INSPEC (IEE), London, 1994), p. 323.Google Scholar
  5. 5.
    J. D. Patterson, W. A. Gobba, and S. L. Lehoczky, J. Mater. Res. 7, 2211 (1992).CrossRefGoogle Scholar
  6. 6.
    A. N. Pikhtin and A. D. Yas’kov, Sov. Phys.Semicond. 22, 613 (1988).Google Scholar
  7. 7.
    J. Baars and F. Sorger, Solid State Commun. 10, 875 (1972).CrossRefGoogle Scholar
  8. 8.
    D. N. Talwar and M. Vandevyver, J. Appl. Phys. 56, 1601 (1984).CrossRefGoogle Scholar
  9. 9.
    S. P. Kozyrev, V. N. Pyrkov, and L. K. Vodop’yanov, Sov. Phys. Solid State 34, 1984 (1992).Google Scholar
  10. 10.
    D. Bagot, R. Granger, and S. Rolland, Phys. Status Solidi B 183, 395 (1994).CrossRefGoogle Scholar
  11. 11.
    S. P. Kozyrev, L. K. Vodopyanov, and R. Triboulet, Phys. Rev. B 58, 1374 (1998).CrossRefGoogle Scholar
  12. 12.
    M. W. Scott, J. Appl. Phys. 40, 4077 (1969).CrossRefGoogle Scholar
  13. 13.
    E. Finkman and Y. Nemirovsky, J. Appl. Phys. 50, 4356 (1979).CrossRefGoogle Scholar
  14. 14.
    L. D. Saginov, V. P. Ponomarenko, V. A. Fedirko, and V. I. Stafeev, Sov. Phys. Semicond. 16, 298 (1982).Google Scholar
  15. 15.
    E. Finkman and S. E. Schacham, J. Appl. Phys. 56, 2896 (1984).CrossRefGoogle Scholar
  16. 16.
    J. Chu, Z. Mi, and D. Tang, Infrared Phys. 32, 195 (1991).CrossRefGoogle Scholar
  17. 17.
    B. Li, J. H. Chu, Y. Chang, Y. S. Gui, and D. Y. Tang, Infrared Phys. Technol. 37, 525 (1996).CrossRefGoogle Scholar
  18. 18.
    V. Nathan, J. Appl. Phys. 83, 2812 (1998).CrossRefGoogle Scholar
  19. 19.
    J. Chu, B. Li, and D. Tang, J. Appl. Phys. 75, 1234 (1994).CrossRefGoogle Scholar
  20. 20.
    Z. Kucera, Phys. Status Solidi A 100, 659 (1987).CrossRefGoogle Scholar
  21. 21.
    K. Liu, J. H. Chu, and D. Y. Tang, J. Appl. Phys. 75, 4176 (1994).CrossRefGoogle Scholar
  22. 22.
    R. R. Galazka and A. Kisiel, Phys. Status Solidi 34, 63 (1969).CrossRefGoogle Scholar
  23. 23.
    L. Vina, C. Umbach, M. Cardona, and L. Vodopyanov, Phys. Rev. B 29, 6752 (1984).CrossRefGoogle Scholar
  24. 24.
    H. Arwin and D. E. Aspnes, J. Vac. Sci. Technol. A 2, 1316 (1984).CrossRefGoogle Scholar
  25. 25.
    C. C. Kim and S. Sivananthan, J. Electron. Mater. 26, 561 (1997).CrossRefGoogle Scholar
  26. 26.
    D. E. Aspnes and H. Arwin, J. Vac. Sci. Technol. A 2, 1309 (1984).CrossRefGoogle Scholar
  27. 27.
    D. R. Rhiger, J. Electron. Mater. 22, 887 (1993).CrossRefGoogle Scholar
  28. 28.
    G. J. Orloff and P. B. Smith, J. Vac. Sci. Technol. A 12, 1252 (1994).CrossRefGoogle Scholar
  29. 29.
    J. D. Benson, A. B. Cornfeld, M. Martinka, K. M. Singley, Z. Derzko, P. J. Shorten, J. H. Dinan, P. R. Boyd, F. C. Wolfgram, B. Johs, P. He, and J. A. Woollam, J. Electron. Mater. 25, 1406 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sadao Adachi
    • 1
  1. 1.Department of Electronic EngineeringGunma UniversityKiryu-shi, GunmaJapan

Personalised recommendations