Mercury Selenide (HgSe)

  • Sadao Adachi


Mercury selenide (HgSe) is a IIb–VIb semiconductor crystallizing in the zinc-blende structure. It forms solid solutions with many other IIb–VIb compounds. For example, alloying with ZnSe or CdSe results in a material with an energy gap that depends on Zn or Cd contents (see Sec. D21). This material may also be alloyed with MnSe or FeSe to form diluted magnetic semiconductors (see Sec. D23). HgSe films have also been successfully grown by MBE [1–3].


Interband Transition Dilute Magnetic Semiconductor Bridgman Method Free Electron Concentration Inverse Photoemission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Lansari, J. W. Cook, Jr., and J. F. Schetzina, J. Electron. Mater. 22, 809 (1993).CrossRefGoogle Scholar
  2. 2.
    C. R. Becker, L. He, S. Einfeldt, Y. S. Wu, G. Lérondel, H. Heinke, S. Oehling, R. N. Bicknell-Tassius, and G. Landwehr, J. Cryst. Growth 121, 331 (1993).CrossRefGoogle Scholar
  3. 3.
    S. Einfeldt, H. Heinke, M. Behringer, C. R. Becker, E. Kurtz, D. Hommel, and G. Landwehr, J. Cryst. Growth 138, 471 (1994).CrossRefGoogle Scholar
  4. 4.
    S. Bloom and T. K. Bergstresser, Phys. Status Solidi 42, 191 (1970).CrossRefGoogle Scholar
  5. 5.
    Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 22, Pt. a (Springer, Berlin, 1987).Google Scholar
  6. 6.
    A. Moritani, C. Hamaguchi, and J. Nakai, J. Phys. Soc. Jpn 32, 1151 (1972).CrossRefGoogle Scholar
  7. 7.
    A. Sarem, B. J. Kowalski, and B. A. Orlowski, J. Phys.: Condens. Matter 2, 8173 (1990).CrossRefGoogle Scholar
  8. 8.
    K.-U. Gawlik, L. Kipp, M. Skibowski, N. Orlowski, and R. Manzke, Phys. Rev. Lett. 78, 3165 (1997).CrossRefGoogle Scholar
  9. 9.
    H. Overhof, Phys. Status Solidi B 43, 221 (1971).CrossRefGoogle Scholar
  10. 10.
    A. Manabe, H. Noguchi, and A. Mitsuishi, Phys. Status Solidi B 90, 157 (1978).CrossRefGoogle Scholar
  11. 11.
    A. M. Witowski and M. Grynberg, Phys. Status Solidi B 100, 389 (1980).CrossRefGoogle Scholar
  12. 12.
    S. Einfeldt, F. Goschenhofer, C. R. Becker, and G. Landwehr, Phys. Rev. B 51, 4915 (1995).CrossRefGoogle Scholar
  13. 13.
    P. S. Kireev and V. V. Volkov, Sov. Phys. Semicond. 7, 949 (1974).Google Scholar
  14. 14.
    W. J. Scouler and G. B. Wright, Phys. Rev. 133, A736 (1964).CrossRefGoogle Scholar
  15. 15.
    A. Moritani, H. Sekiya, K. Taniguchi, C. Hamaguchi, and J. Nakai, Jpn. J. Appl. Phys. 10, 1410 (1971).CrossRefGoogle Scholar
  16. 16.
    E. Guziewicz, B. J. Kowalski, K. Szamota-Sadowska, W. Szuszkiewicz, and B. A. Orlowski, Phys. Rev. B 55, 4405 (1997).CrossRefGoogle Scholar
  17. 17.
    K. Kumazaki, L. Vina, C. Umbach, and M. Cardona, Phys. Status Solidi B 156, 371 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sadao Adachi
    • 1
  1. 1.Department of Electronic EngineeringGunma UniversityKiryu-shi, GunmaJapan

Personalised recommendations