Skip to main content

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 5))

Abstract

This chapter illustrates several methods to learn fuzzy rules from data by using approaches known as neuro-fuzzy methods. The learning procedures that are used in this area are mostly motivated by the learning algorithms known from neural networks. In learning fuzzy rules we distinguish between structure learning and parameter learning. The first term refers to finding an initial fuzzy rule base, and the second term denotes the adaptation of parameters of membership functions to enhance the performance of a fuzzy rule base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berenji, H. R. (1998). Learning and tuning of fuzzy rules. In Nguyen, H. T. and Sugeno, M., editors, Fuzzy Systems Modeling and Control, The Handbooks on Fuzzy Sets, chapter 8, pages 291–310. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Bersini, H. and Bontempi, G. (1997). Now comes the time to defuzzify neuro-fuzzy models. Fuzzy Sets and Systems, 90:161–170.

    Article  Google Scholar 

  • Bersini, H., Nordvik, J.-P., and Bonarini, A. (1993). A simple direct adaptive fuzzy controller derived from its neural equivalent. In Proc. IEEE Int. Conf. on Fuzzy Systems 1993, pages 345–350, San Francisco.

    Google Scholar 

  • Bezdek, I., Keller, J., Krishnapuram, R., and Pal, N. (1998). Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. The Handbooks on Fuzzy Sets. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

    Book  MATH  Google Scholar 

  • Buckley, J. J. (1993). Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 53:299–303.

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley, J. J. and Eslami, E. (1996). Fuzzy neural networks: Capabilities. In Pedrycz, W., editor, Fuzzy Modelling: Paradigms and Practice, pages 167–183. Kluwer, Boston.

    Chapter  Google Scholar 

  • Dubois, D., Lang, J., and Prade, H. (1994). Automated reasoning using possibilistic logic: Semantics, belief revision and variable certainty weights. IEEE Trans. Data and Knowledge Engineering, 6(1):64–71.

    Article  Google Scholar 

  • Dubois, D. and Prade, H. (1988). Possibility Theory. Plenum Press, New York.

    Book  MATH  Google Scholar 

  • Feuring, T. and Lippe, W. M. (1996). Learning in fuzzy neural networks. In Proc. IEEE Int. Conf. on Neural Networks 1996 (ICNN’ 96), pages 1061–1066, Washington.

    Google Scholar 

  • Gath, I. and Geva, A. (1989). Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Analysis and Machine Intelligence, 11:773–781.

    Article  Google Scholar 

  • Gustafson, D. and Kessel, W. (1979). Fuzzy clustering with a fuzzy covariance matrix. In Proc. IEEE CDC, pages 761–766, San Diego, CA.

    Google Scholar 

  • Haykin, S. (1994). Neural Networks. A Comprehensive Foundation. Macmillan College Publishing Company, New York.

    MATH  Google Scholar 

  • Heckerman, D. (1988). Probabilistic interpretation for MYCIN’s certainty factors. In Lemmer, J. and Kanal, L., editors, Uncertainty in Artificial Intelligence (2), pages 167–196. North-Holland, Amsterdam.

    Google Scholar 

  • Höppner, F., Klawonn, F., Kruse, R., and Runkler, T. (1998). Fuzzy Cluster Analysis. Wiley, Chichester. to appear.

    Google Scholar 

  • Hornik, M., Stinchcombe, M., and White, H. (1989). Multilayer feedfoward networks are universal approximators. Neural Networks, 2:359–366.

    Article  Google Scholar 

  • Ichihashi, H. (1991). Iterative fuzzy modelling and a hierarchical network. In Lowen, R. and Roubens, M., editors, Proc. 4th IFSA Congress, volume on Engineering, pages 49–52, Brussels.

    Google Scholar 

  • Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. Systems, Man & Cybernetics, 23:665–685.

    Article  Google Scholar 

  • Kaelbling, L. P., Littman, M. H., and Moore, A. W. (1996). Reinforcement learning: A survey. J. Artificial Intelligence Research, 4:237–285.

    Google Scholar 

  • Klawonn, F. and Kruse, R. (1997). Constructing a fuzzy controller from data. Fuzzy Sets and Systems, 85:177–193.

    Article  MathSciNet  Google Scholar 

  • Kohonen, T. (1984). Self-Organization and Associative Memory. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Kosko, B. (1992a). Fuzzy systems as universal approximators. In Proc. IEEE Int. Conf. on Fuzzy Systems 1992, pages 1153–1162, San Diego, CA.

    Google Scholar 

  • Kosko, B. (1992b). Neural Networks and Fuzzy Systems. A Dynamical Systems Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Kruse, R., Gebhardt, J., and Klawonn, F. (1994). Foundations of Fuzzy Systems. Wiley, Chichester.

    Google Scholar 

  • Kruse, R., Schwecke, E., and Heinsohn, J. (1991). Uncertainty and Vagueness in Knowledge-Based Systems: Numerical Methods. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Lee, C. C. (1990a). Fuzzy logic in control systems: Fuzzy logic controller, part i. IEEE Trans. Systems, Man & Cybernetics, 20:404–418.

    Article  MATH  Google Scholar 

  • Lee, C. C. (1990b). Fuzzy logic in control systems: Fuzzy logic controller, part ii. IEEE Trans. Systems, Man & Cybernetics, 20:419–435.

    Article  MATH  Google Scholar 

  • Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Machine Studies, 7:1–13.

    Article  MATH  Google Scholar 

  • Nauck, D. (1998a). NEFCLASS. Univ. of Magdeburg, www.http://fuzzy.cs.uni-magdeburg.de/nefclass.

  • Nauck, D. (1998b). NEFPROX. Univ. of Magdeburg, www.http://fuzzy.cs.uni-magdeburg.de/nefprox.

  • Nauck, D., Klawonn, F., and Kruse, R. (1997). Foundations of Neuro-Fuzzy Systems. Wiley, Chichester.

    Google Scholar 

  • Nauck, D. and Kruse, R. (1997). A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems, 89:277–288.

    Article  MathSciNet  Google Scholar 

  • Nauck, D. and Kruse, R. (1998a). How the learning of rule weights affects the interpretability of fuzzy systems. In Proc. IEEE Int. Conf. on Fuzzy Systems 1998, pages 1235–1240, Anchorage.

    Google Scholar 

  • Nauck, D. and Kruse, R. (1998b). A neuro-fuzzy approach to obtain interpretable fuzzy systems for function approximation. In Proc. IEEE Int. Conf. on Fuzzy Systems 1998, pages 1106–1111, Anchorage.

    Google Scholar 

  • Nomura, H., Hayashi, I., and Wakami, N. (1992). A learning method of fuzzy inference rules by descent method. In Proc. IEEE Int. Conf. on Fuzzy Systems 1992, pages 203–210, San Diego, CA.

    Google Scholar 

  • Nürnberger, A. and Nauck, D. (1998). NEFCON. Univ. of Magdeburg, WWW. http://fuzzy.cs.uni-magdeburg.de/nefcon.

  • Nürnberger, A., Nauck, D., and Kruse, R. (1997). Neuro-fuzzy control based on the NEFCON model under MATLAB/SIMULINK. In Chawdry, P., Roy, R., and Pant, R. K., editors, Proc. 2nd On-line World Conference on Soft Computing (WSC2), London. Springer-Verlag.

    Google Scholar 

  • Pedrycz, W. and Card, H. C. (1992). Linguistic interpretation of self-organizing maps. In Proc. IEEE Int. Conf. on Fuzzy Systems 1992, pages 371–378, San Diego, CA.

    Google Scholar 

  • Pedrycz, W., Kandel, A., and Zhang, Y.-Q. (1998). Neurofuzzy systems. In Nguyen, H. T. and Sugeno, M., editors, Fuzzy Systems Modeling and Control, The Handbooks on Fuzzy Sets, chapter 9, pages 311–380. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Poggio, T. and Girosi, F. (1989). A theory of networks for approximation and learning. A.I. Memo 1140, MIT, Cambridge, MA.

    Google Scholar 

  • Rojas, R. (1996). Neural Networks — A Systematic Introduction. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Rumelhart, D. E. and McClelland, J. L., editors (1986). Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Foundations, volume 1. MIT Press, Cambridge, MA.

    Google Scholar 

  • Simpson, P. K. (1992a). Fuzzy min-max neural networks—part 1: Classification. IEEE Trans. Neural Networks, 3:776–786.

    Article  Google Scholar 

  • Simpson, P. K. (1992b). Fuzzy min-max neural networks — part 2: Clustering. IEEE Trans. Fuzzy Systems, 1:32–45.

    Article  Google Scholar 

  • Sugeno, M. (1985). An introductory survey of fuzzy control. Information Sciences, 36:59–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka, K. and Sugeno, M. (1998). Introduction to fuzzy modeling. In Nguyen, H. T. and Sugeno, M., editors, Fuzzy Systems Modeling and Control, The Handbooks on Fuzzy Sets, chapter 2, pages 63–90. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Tschichold-Gürman, N. (1996). RuleNet-A New Knowledge-Based Artificial Neural Network Model with Application Examples in Robotics. PhD thesis, ETH Zürich.

    Google Scholar 

  • Tschichold-Gürman, N. (1997). The neural network model rulenet and its application to mobile robot navigation. Fuzzy Sets and Systems, 85:287–303.

    Article  Google Scholar 

  • Wang, L.-X. and Mendel, J. M. (1992). Generating fuzzy rules by learning from examples. IEEE Trans. Syst., Man, Cybern., 22(6): 1414–1427.

    Article  MathSciNet  Google Scholar 

  • Werbos, P. J. (1974). Beyond Regressions: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nauck, D., Kruse, R. (1999). Neuro-Fuzzy Methods in Fuzzy Rule Generation. In: Bezdek, J.C., Dubois, D., Prade, H. (eds) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbooks of Fuzzy Sets Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5243-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5243-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7390-2

  • Online ISBN: 978-1-4615-5243-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics