Abstract
(a) Definition—The analysis of optical spectra is one of the most useful tools for understanding electronic structure of amorphous semiconductors. Pierce and Spicer [1] performed photoemission measurements on a-Si to study the electronic structure and optical properties of the material. They used a conventional retarding-field energy analyzer and a high-resolution screened-emitter analyzer to measure the energy distribution curves from this material. When the energy distribution curves from c-Si are examined, one finds variations in the position and strength of structure as a result of the conservation of wave vector k in the crystal. However, in amorphous materials no such variations had been found in the energy distribution curves. This is not unexpected because the absence of long-range order in amorphous materials renders the Bloch theorem inapplicable and leaves the crystalline momentum M undefined. They suggested optical transitions in amor- phous semiconductors to be described, to a first approximation, by the nondirect transition model in which conservation of the energy but not wave vector is significant [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
D. T. Pierce and W. E. Spicer, Phys. Rev. B 5, 3017 (1972).
L. Ley, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, Orland, 1984), Vol. 21 (Volume Editor, J. I. Pankove), Part B, p. 385.
D. A. Davis, Jpn. J. Appl. Phys. 32, 178 (1993).
D. L. Wood and J. Taue, Phys. Rev. B 5, 3144 (1972).
A. Ibrahim and S. K. J. Al-Ani, Int. J. Optoelectron. 9, 25 (1994).
N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).
E. A. Davis and N. F. Mott, Phil. Mag. 22, 903 (1970).
D. E. Aspnes, A. A. Studna, and E. Kinsbron, Phys. Rev. B 29, 768 (1984).
R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, Phil. Mag. B 45, 377 (1982).
E. E. Khawaja and C. A. Hogarth, J. Phys. C: Solid State Phys. 21, 607 (1988).
G. D. Cody, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, Orland, 1984), Vol. 21 (Volume Editor, J. I. Pankove), Part B, p. 11.
G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
See, for instance, D. Adler, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, Orland, 1984), Vol. 21 (Volume Editor, J. I. Pankove), Part A, p. 291.
P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, Phys. Rev. B 36, 4821 (1987).
C. K. Kim, P. Lautenschlager, and M. Cardona, Solid State Commun. 59, 797 (1986).
S. Zollner, S. Gopalan, and M. Cardona, Solid State Commun. 77, 485 (1991).
N. Do, L. Klees, P. T. Leung, F. Tong, W. P. Leung, and A. C. Tarn, Appl. Phys. Lett. 60, 2186 (1992).
V. A. Sidorov, V. V. Brazhkin, L. G. Khvostantsev, A. G. Lyapin, A. V. Sapelkin, and O. B. Tsiok, Phys. Rev. Lett. 73, 3262 (1994), and references cited therein.
S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlat-tice Properties (World Scientific, SI, 1994).
B. Welber and M. H. Brodsky, Phys. Rev. B 16, 3660 (1977).
S. Minomura, J. Phys. (Paris) Colloq. 42, C4–181 (1981).
K. Tanaka, Phys. Rev. B 43, 4302 (1991).
M. Imai, K. Tsuji, and T. Yagi, Jpn. J. Appl. Phys. 32, 191 (1993), and references cited therein.
J. Taue, in Optical Properties of Solids, edited by F. Abelès (North-Holland, Amsterdam, 1972), p. 277.
G. F. Feng, M. Katiyar, J. R. Abelson, and N. Maley, Phys. Rev. B 45, 9103 (1992).
B. Kramer, K. Maschke, and P. Thomas, Phys. Status Solidi B 49, 525 (1972).
D. Campi and C. Coriasso, J. Appl. Phys. 64, 4128 (1988).
W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S.-J. Oh, Phys. Rev. B 31, 5187 (1985).
A. R. Forouhi and I. Bloomer, Phys. Rev. B 34, 7018 (1986).
S. Logothetidis, J. Petalas, A. Markwitz, and R. L. Johnson, J. Appl. Phys. 73, 8514 (1993).
J. Petalas and S. Logothetidis, Phys. Rev. B 50, 11801 (1994).
J. Taue, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).
S. Adachi, Phys. Rev. B 43, 12316 (1991).
S. Adachi, J. Appl. Phys. 70, 2304 (1991).
G. A. N. Connell, R. J. Temkin, and W. Paul, Adv. Phys. 22, 643 (1973).
M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, J. Appl. Phys. 56, 2664 (1984).
C. A. Alejo-Armenta, C. Vázquez-Lopez, and A. Pèrez-Gonzà lez, Solid State Commun. 86, 417 (1993).
K. Maschke and P. Thomas, Phys. Status Solidi 41, 743 (1970).
G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett. 69, 371 (1996); ibid. 69, 2137 (1996).
See, G. F. Feng and R. Zallen, Phys. Rev. B 40, 1064 (1989).
See, M. Fang and D. Drèvillon, J. Appl. Phys. 70, 4894 (1991).
T. V. Herak, J. J. Schellenberg, P. K. Shufflebotham, and K. C. Kao, J. Appl. Phys. 64, 688 (1988), and references cited therein.
S. Adachi, T. Matsumura, and T. Suzuki, Jpn. J. Appl. Phys. 33, 1931 (1994).
H. V. Nguyen and R. W. Collins, Phys. Rev. B 47, 1911 (1993).
T. Suzuki and S. Adachi, Jpn. J. Appl. Phys. 32, 4900 (1993).
D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
B. G. Bagley, D. E. Aspnes, and A. C. Adams, Bull. Am. Phys. Soc. 25, 12 (1980).
S. Adachi and T. Aoki, J. Appl. Phys. 71, 3313 (1992).
T. M. Burns, S. Chongsawangvirod, J. W. Andrews, E. A. Irene, G. McGuire, and S. Chevacharoeukul, J. Vac. Sei. Technol. B 9, 41 (1991).
R. E. Hummel, W. Xi, P. H. Holloway, and K. A. Jones, J. Appl. Phys. 63, 2591 (1988).
M. Fang and B. Drevillon, J. Appl. Phys. 71, 5445 (1992).
G. E. Jellison, Jr., M. F. Chisholm, and S. M. Gorbatkin, Appl. Phys. Lett. 62, 3348 (1993).
S. Logothetidis, G. Kiriakidis, and E. C. Paloura, J. Appl. Phys. 70, 2791 (1991).
B. Boultadakis, S. Logothetidis, and S. Ves, J. Appl. Phys. 72, 3648 (1992).
D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, Phys. Rev. Lett. 48, 1863 (1982).
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer Science+Business Media New York
About this chapter
Cite this chapter
Adachi, S. (1999). The Interband Transition Region: Amorphous and Microcrystalline Materials. In: Optical Properties of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5241-3_4
Download citation
DOI: https://doi.org/10.1007/978-1-4615-5241-3_4
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-7389-6
Online ISBN: 978-1-4615-5241-3
eBook Packages: Springer Book Archive