Skip to main content

Distributed Control Parallelism for Multidisciplinary Design of a High Speed Civil Transport

  • Chapter
  • 113 Accesses

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 515))

Abstract

Large scale multidisciplinary design optimization (MDO) problems often involve massive computation over vast data sets. Regardless of the MDO problem solving methodology, advanced computing technologies and architectures are indispensable. The data parallelism inherent in some engineering problems makes massively parallel architectures a natural choice, but efficiently harnessing the power of massive parallelism requires sophisticated algorithms and techniques. This paper presents an effort to apply massively scalable distributed control and dynamic load balancing techniques to the reasonable design space identification phase of a variable complexity approach to the multidisciplinary design optimization of a high speed civil transport (HSCT). The scalability and performance of two dynamic load balancing techniques, random polling and global round robin with message combining, and two termination detection schemes, token passing and global task count, are studied. The extent to which such techniques are applicable to other MDO paradigms, and to the potential for parallel multidisciplinary design with current large-scale disciplinary codes, is of particular interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balabanov, V., Kaufman, M., Giunta, A., A., Grossman, B., Mason, W. H., Watson, L. T., and Haftka, R. T. (1996). Developing customized weight function by structural optimization on parallel computers. In 37th AIAAIASMEIASCE/AHSIASC,Structures, Structural Dynamics and Materials Conference, pages 113–125, Salt Lake City, UT, AIAA Paper 96–1336 (A96–26815).

    Google Scholar 

  2. Becker, J. and Bloebaum, C. (1996). Distributed computing for multidisciplinary design optimization using java. In Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pages 1583–1593, Bellevue, Washington. AIAA.

    Google Scholar 

  3. Bischof, C., Green, L., Haigler, K., and Jr., T. K. (1994). Parallel calculation of sensitivity derivatives for aircraft design using automatic differentiation. In Fifth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, pages 73–86, Panama City, Florida. AIAA.

    Google Scholar 

  4. Box, G. E. P. and Behnken, D. W. (1960). Some New Three Level Designs for the Study of Quantitative Variables, volume 2. Technometrics.

    Google Scholar 

  5. Braun, R. and Kroo, I. (1995). Development and application of the collaborative optimization architecture in a multidisciplinary design environment, pages 98–116. In Multidisciplinary Design Optimization: State of the Art, N. Alexandrov, M.Y. Hussaini (Eds.). SIAM, Philadelphia.

    Google Scholar 

  6. Brzezinski, J., Hélary, J.-M., and Raynal, M. (1993). Distributed termination detection: General model and algorithms. Technical Report BROADCAST#TR9305, ESPRIT Basic Research Project BROADCAST.

    Google Scholar 

  7. Burgee, S., Giunta, A. A., Balabanov, V., Grossman, B., Mason, W. H., Narducci, R., Haftka, R. T., and Watson, L. T. (1996). A coarse-grained parallel variable-complexity multidisciplinary optimization paradigm. The International Journal of Supercomputer Applications and High Performance Computing, 10(4):269–299.

    Article  Google Scholar 

  8. Dennis Jr., J., Lewis, R. M. (1994). Problem formulations and other issues in multidisciplinary optimization. Tech. Rep. CRPC–TR94469, CRPC, Rice University.

    Google Scholar 

  9. Dennis Jr., J., V. T. (1991). Direct search methods on parallel machines. SIAM Journal of Optimization, 1(4):448–474.

    Article  MathSciNet  MATH  Google Scholar 

  10. Doorly, D., Peiró, J., and Oesterle, J. (1996). Optimisation of aerodynamic and coupled aerodynamic-structural design using parallel genetic algorithms. In Sixth AIAA/NASAIISSMO Symposium on Multidisciplinary Analysis and Optimization, pages 401–409, Bellevue, Washington. AIAA.

    Google Scholar 

  11. Eldred, M., Hart, W., Bohnhoff, W., Romero, V., Hutchison, S., and Salinger, A. (1996). Utilizing object-oriented design to build advanced optimization strategies with generic implementation. In Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,pages 1568–1582, Bellevue, Washington. AIAA.

    Google Scholar 

  12. Ghattas, O. and Orozco, C. (1995). A parallel reduced Hessian SQP method for shape optimization, pages 133–152. In Multidisciplinary Design Optimization: State of the Art, N. Alexandrov, M.Y. Hussaini (Eds.). SIAM, Philadelphia.

    Google Scholar 

  13. Giunta, A. A. (1997). Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods. PhD thesis, Virginia Polytechnic Institute and State University.

    Google Scholar 

  14. Guruswamy, G. (1998). Impact of parallel computing on high fidelity based multidisciplinary analysis. In Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pages 67–80, St. Louis, Missouri. AIAA.

    Google Scholar 

  15. Hale, M. and Craig, J. (1995). Use of agents to implement an integrated computing environment. In Computing in Aerospace 10, pages 403–413, San Antonio, Texas. AIAA.

    Google Scholar 

  16. Harris Jr., R. V. (1964). An analysis and correlation of aircraft wave drag. Technical Report TM X-947, NASA.

    Google Scholar 

  17. Hinkelman, K. (1994). Design and analysis of experiments. John Wiley & Sons, Inc.

    Google Scholar 

  18. Hopkins, D., Patnaik, S., and Berke, L. (1996). General-purpose optimization engine for multi-disciplinary design applications. In Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pages 1558–1565, Bellevue, Washington. AIAA.

    Google Scholar 

  19. Hulme, K. F. and Bloebaum, C. (1996). Development of CASCADE: a multidisciplinary design test simulator. In Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pages 438–447, Bellevue, Washington. AIAA.

    Google Scholar 

  20. Kameda, H., Li, J., Kim, C., and Zhang, Y. (1997). Optimal Load Balancing in Distributed Computer Systems. Springer-Verlag.

    Book  Google Scholar 

  21. Kaufman, M. D. (1996). Variable-complexity response surface approximations for wing structural weight in hsct design. Master’s thesis, Virginia Polytechnic Institute and State University.

    Google Scholar 

  22. Knill, D., Giunta, A., Baker, C., Grossman, B., Mason, W., Haftka, R., and Watson, L. Response surface models combining linear and euler aerodynamics for hsct design. Journal of Aircraft (to appear).

    Google Scholar 

  23. Kroo, I., Altus, S., Braun, R., Gage, P., and Sobieski, I. (1994). Mul-tidisciplinary optimization methods for aircraft preliminary design. In Fifth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, pages 697–707, Panama City, Florida. AIAA.

    Google Scholar 

  24. Kumar, V., Grama, A. Y., and Vempaty, N. R. (1994). Scalable load balancing techniques for parallel computers. Journal of Parallel and Distributed Computing, 22(1):60–79.

    Article  Google Scholar 

  25. Ridlon, S. (1996). A software framework for enabling multidisciplinary analysis and optimization. In Fifth AIAA/USAF/NASAIOAI Symposium on Multidisciplinary Analysis and Optimization, pages 1280–1285, Panama City, Florida. AIAA.

    Google Scholar 

  26. Sanders, P. (1994). A detailed analysis of random polling dynamic load balancing. In International Symposium on Parallel Architectures, Algorithms,and Networks, pages 382–389, Kanazawa, Japan.

    Google Scholar 

  27. Sanders, P. (1995). Some implementations results on random polling dynamic load balancing. Technical Report iratr-1995–40, Universität Karlsruhe, Informatik für Ingenieure und Naturwissenschaftler.

    Google Scholar 

  28. Singhal, M. and Shivaratri, N. G. (1994). Advanced Concepts in Operating Systems. McGraw-Hill.

    Google Scholar 

  29. Snir, Marc O., W., S., Huss-Lederman, S., Walker, D. W., and Dongarra, J. (1996). MPI The Complete Reference. The MIT Press.

    Google Scholar 

  30. Tel, G. (1991). Topics in Distributed Algorithms. Number 1 in Cambridge International Series in Parallel Computation. Cambridge University Press.

    Google Scholar 

  31. Tel, G. (1994). Introduction to Distributed Algorithms. Cambridge University Press.

    Google Scholar 

  32. Weston, R., Townsend, J., Edison, T., Gates, R. (1994). A distributed computing environment for multidisciplinary design. In Fifth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, pages 1091–1095, Panama City, Florida. AIAA.

    Google Scholar 

  33. Wujek, B., Renaud, J., and Batill, S. M. (1995). A concurrent engineering approach for multidisciplinary design in a distributed computing environment, pages 189–208. In MultidisciplinaryDesign Optimization: State of the Art, N. Alexandrov, M.Y. Hussaini (Eds.). SIAM, Philadelphia.

    Google Scholar 

  34. Yoder, S. and Brockman, J. (1996). A software architecture for collaborative development and solution of mdo problems. In Sixth AIAAINASAIISSMO Symposium on Multidisciplinary Analysis and Optimization, pages 1060–1062, Bellevue, Washington. AIAA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tianruo Yang

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krasteva, D.T., Watson, L.T., Baker, C.A., Grossman, B., Mason, W.H., Haftka, R.T. (1999). Distributed Control Parallelism for Multidisciplinary Design of a High Speed Civil Transport. In: Yang, T. (eds) Parallel Numerical Computation with Applications. The Springer International Series in Engineering and Computer Science, vol 515. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5205-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5205-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7371-1

  • Online ISBN: 978-1-4615-5205-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics