Discrete Choice Methods and their Applications to Short Term Travel Decisions

  • Moshe Ben-Akiva
  • Michel Bierlaire
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 23)

Abstract

Modeling travel behavior is a key aspect of demand analysis, where aggregate demand is the accumulation of individuals’ decisions. In this chapter, we focus on “short-term” travel decisions. The most important short-term travel decisions include choice of destination for a non-work trip, choice of travel mode, choice of departure time and choice of route. It is important to note that short-term decisions are conditional on long-term travel and mobility decisions such as car ownership and residential and work locations.

Keywords

Covariance Transportation Income Dial Toll 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S. P., de Palma, A. and Thisse, J.-F. (1992). Discrete Choice Theory of Product Differentiation, MIT Press, Cambridge, Ma.Google Scholar
  2. Antoniou, C, Ben-Akiva, M.E., Bierlaire, M., and Mishalani, R. (1997) Demand Simulation for Dynamic Traffic Assignment. Proceedings of the 8th IFAC/IFIP/IFORS symposium on transportation systems.Google Scholar
  3. Ben-Akiva, M. and François, B. (1983). μhomogeneous generalized extreme value model, Working paper, Department of Civil Engineering, MIT, Cambridge, Ma.Google Scholar
  4. Ben-Akiva, M. E. (1973). Structure of passenger travel demand models, PhD thesis, Department of Civil Engineering, MIT, Cambridge, Ma.Google Scholar
  5. Ben-Akiva, M. E. (1974). Structure of passenger travel demand models, Transportation Research Record 526.Google Scholar
  6. Ben-Akiva, M. E. and Boccara, B. (1995). Discrete choice models with latent choice sets, International Journal of Research in Marketing 12: 9–24.CrossRefGoogle Scholar
  7. Ben-Akiva, M. E. and Bolduc, D. (1996). Multinomial probit with a logit kernel and a general parametric specification of the covariance structure, presented at the 3rd International Choice Symposium, Columbia University.Google Scholar
  8. Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, Cambridge, Ma.Google Scholar
  9. Ben-Akiva, M. E., Bergman, M. J., Daly, A. J. and Ramaswamy, R. (1984). Modeling inter-urban route choice behaviour, in J. Volmuller and R. Hamerslag (eds), Proceedings from the ninth international symposium on transportation and traffic theory, VNU Science Press, Utrecht, Netherlands, pp. 299–330.Google Scholar
  10. Ben-Akiva, M. E., Cyna, M. and de Palma, A. (1984). Dynamic model of peak period congestion, Transportation Research B 18(4-5): 339–355.CrossRefGoogle Scholar
  11. Bierlaire, M. (1995). A robust algorithm for the simultaneous estimation of hierarchical logit models, GRT Report 95/3, Department of Mathematics, FUNDP.Google Scholar
  12. Bierlaire, M. (1998). Discrete choice models, in M. Labbé, G. Laporte, K Tanczos and Ph. Toint (eds), Operations Research in Traffic and Transportation Management, Vol. 166 of NATO ASI Series, Series F: Computer and Systems Sciences, Springer Verlag, pp. 203–227Google Scholar
  13. Bierlaire, M. and Vandevyvere, Y. (1995). HieLoW: the interactive user’s guide, Transportation Research Group-FUNDP, Namur.Google Scholar
  14. Bierlaire, M., Lotan, T. and Toint, Ph. L. (1997). On the overspecification of multinomial and nested logit models due to alternative specific constants, Transportation Science 31(4): 363–371.CrossRefGoogle Scholar
  15. Bolduc, D., Fortin, B. and Fournier, M.-A. (1996). The effect of incentive policies on the practice location of doctors: A multinomial Probit analysis, Journal of labor economics 14(4): 703.CrossRefGoogle Scholar
  16. Bradley, M. A. and Daly, A. (1991). Estimation of logit choice models using mixed stated preferences and revealed preferences information, Methods for understanding travel behaviour in the 1990’s, International Association for Travel Behaviour, Québec, pp.∼116–133. 6th international conference on travel behaviour.Google Scholar
  17. Burrell, J. E. (1968). Multipath route assignment and its application to capacity restraint. Proceedings of the 4th international symposium on the theory of road traffic flow, Karslruhe, Germany.Google Scholar
  18. Cardell and Dunbar (1980). Measuring the societal impacts of automobile downsizing, Transportation Research A 14(5-6): 423–434.CrossRefGoogle Scholar
  19. Cascetta, E. and Papola, A. (1998). Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand, Technical report, Universita degli Studi di Napoli Federico II.Google Scholar
  20. Cascetta, E., Nuzzolo, A. and Biggiero, L. (1992). Analysis and Modeling of Commuters’ Departure Time and Route Choice in Urban Networks. Proceedings of the Second International CAPRI Seminar on Urban Traffic Networks.Google Scholar
  21. Cascetta, E., Nuzzolo, A., Russo, F. and Vitetta, A. (1996). A modified logit route choice model overcoming path overlapping problems. Specification and some calibration results for interurban networks, Proceedings of the 13th International Symposium on the Theory of Road Traffic Flow (Lyon, France).Google Scholar
  22. Chang, G. L. and Mahmassani, H. S. (1986). Experiments with departure time choice dynamics of urban commuters, Transportation Research B 20(4): 297–32CrossRefGoogle Scholar
  23. Chang, G. L. and Mahmassani, H. S. (1988). Travel time prediction and departure time adjustment dynamics in a congested traffic system, Transportation Research B 22(3): 217–232.CrossRefGoogle Scholar
  24. Daganzo, C. F. and Sheffi, Y. (1977). On stochastic models of traffic assignment. Transportation Science 11(3): 253–274.CrossRefGoogle Scholar
  25. Daly, A. (1987). Estimating “tree” logit models, Transportation Research B 21(4): 251–268.CrossRefGoogle Scholar
  26. de Palma, A., Khattak, A. J. and Gupta, D. (1997). Commuters’ departure time decisions in Brussels, Belgium, Transportation Research Record 1607: 139–146.CrossRefGoogle Scholar
  27. Dial, R. B. (1969). Algorithm 360: shortest path forest with topological ordering., Communications of ACM 12: 632–633.CrossRefGoogle Scholar
  28. Dial, R. B. (1971). A probabilistic multipath traffic assignment algorithm which obviates path enumeration, Transportation Research 5(2): 83–111.CrossRefGoogle Scholar
  29. Dijkstra, E. W. (1959). A note on two problems in connection with graphs, Numerische Mathematik 1: 269–271.CrossRefGoogle Scholar
  30. Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York.Google Scholar
  31. Hendrickson, C. and Kocur, G. (1981). Schedule delay and departure time decisions in a deterministic model, Transportation Science 15: 62–77.CrossRefGoogle Scholar
  32. Hendrickson, C. and Plank, E. (1984). The flexibility of departure times for work trips, Transportation Research A 18: 25–36.CrossRefGoogle Scholar
  33. Hensher, D. A. and Johnson, L. W. (1981). Applied discrete choice modeling, Croom Helm, London.Google Scholar
  34. Horowitz, J. L., Koppelman, F. S. and Lerman, S. R. (1986). A self-instructing course in disaggregate mode choice modeling, Technology Sharing Program, US Department of Transportation, Washington, D.C. 20590.Google Scholar
  35. Khattak, A. J. and de Palma, A. (1997). The impact of adverse weather conditions on the propensity to change travel decisions: a survey of Brussels commuters, Transportation Research A 31(3): 181–203.Google Scholar
  36. Koppelman, F. S. and Wen, C.-H. (1997). The paired combinatorial logit model: properties, estimation and application, Transportation Research Board, 76th Annual Meeting, Washington DC. Paper #970953.Google Scholar
  37. Koppelman, F. S. and Wen, C.-H. (1998). Alternative nested logit models: Structure, properties and estimation, Transportation Research B. (forthcoming).Google Scholar
  38. Liu, Y.-H. and Mahmassani, H. (1998). Dynamic aspects of departure time and route decision behavior under ATIS: modeling framework and experimental results, presented at the 77th annual meeting of the Transportation Research Board, Washington DC.Google Scholar
  39. Luce, R. (1959). Individual choice behavior: a theoretical analysis, J. Wiley and Sons, New York.Google Scholar
  40. Luce, R. D. and Suppes, P. (1965). Preference, utility and subjective probability, in R. D. Luce, R. R. Bush and E. Galanter (eds), Handbook of Mathematical Psychology, J. Wiley and Sons, New York.Google Scholar
  41. Manski, C. (1977). The structure of random utility models, Theory and Decision 8: 229–254.CrossRefGoogle Scholar
  42. McFadden, D. (1978). Modeling the choice of residential location, in A. K. et al. (ed.), Spatial interaction theory and residential location, North-Holland, Amsterdam, pp. 75–96.Google Scholar
  43. McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration, Econometrica 57(5): 995–1026.CrossRefGoogle Scholar
  44. McFadden, D. and Train, K. (1997). Mixed multinomial logit models for discrete response, Technical report, University of California, Berkeley, Ca.Google Scholar
  45. Nguyen, S. and Pallottino, S. (1987). Traffic assignment for large scale transit networks, in A. Odoni (ed.), Flow control of congested networks, Springer Verlag.Google Scholar
  46. Nguyen, S., Pallottino, S. and Gendreau, M. (1998). Implicit Enumeration of Hyperpaths in a Logit Model for Transit Networks. Transportation Science 32(1).Google Scholar
  47. Small, K. (1982). The scheduling of consumer activities: work trips, The American Economic Review pp. 467–479.Google Scholar
  48. Small, K. (1987). A discrete choice model for ordered alternatives, Econometrica 55(2): 409–424.CrossRefGoogle Scholar
  49. Swait, J.D. and Ben-Akiva, M. (1987). Incorporating Random Constraints in Discrete Models of Choice Set Generation, Transportation Research B 21(2).Google Scholar
  50. Tversky, A. (1972). Elimination by aspects: a theory of choice, Psychological Review 79:281–299.CrossRefGoogle Scholar
  51. Vovsha, P. (1997). Cross-nested logit model: an application to mode choice in the Tel-Aviv metropolitan area, Transportation Research Board, 76th Annual Meeting, Washington DC.Paper #970387.Google Scholar
  52. Whynes, D., Reedand, G. and Newbold, P. (1996). General practitioners’ choice of referral destination: A Probit analysis, Managerial and Decision Economics 17(6): 587.CrossRefGoogle Scholar
  53. Yai, T., Iwakura, S. and Morichi, S. (1997). Multinomial Probit with structured covariance for route choice behavior, Transportation Research B 31(3): 195–208.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Moshe Ben-Akiva
    • 1
  • Michel Bierlaire
    • 1
  1. 1.Director of the MIT Intelligent Transportation Systems ProgramMassachusetts Institute of Technology (MIT)Switzerland

Personalised recommendations