Skip to main content

Oligonucleotides Containing the G-Quartet Sequence Motif

  • Chapter
Applications of Antisense Therapies to Restenosis

Part of the book series: Perspectives in Antisense Science ((DARE,volume 3))

  • 50 Accesses

Abstract

Guanine quartet (G-quartet) structures were first observed in the early 1900’s as an annoying propensity of guanosine and its derivatives to form viscous gels at low μM concentrations. The tetrameric arrangement of guanosine in the gels, the G-quartet, was established by fiber diffraction in 1962 (1, 2). The G-quartet is a planar array of four hydrogen-bonded guanine bases (Figure 1). Helical quadraplex structures, stabilized by G-quartets, are formed when several G-quartets stack upon each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guschlbauer W, Chantot JF, Thiele D. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomere DNA. J. Biomol Struct Dynam 1990; 8:491–511

    Article  CAS  Google Scholar 

  2. Sundquist, WI. “The structures of telomeric DNA.” In Nucleic Acids and Molecular Biology F. Eckstein & D.M.J. Lilley, eds. Berlin: Springer-Verlag, 1991; 5: pp. 1–24

    Chapter  Google Scholar 

  3. Sen D, Gilbert W. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 1992; 31:65–70

    Article  PubMed  CAS  Google Scholar 

  4. Marsh TC, Vesenka J, Henderson E. A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res 1995; 23:696–700

    Article  PubMed  CAS  Google Scholar 

  5. Rhodes D, Giraldo R. Telomere structure and function. Curr Op Struct Biol 1995; 5:311–322

    Article  CAS  Google Scholar 

  6. Kelly JA., Feigon J, Yeates TO. Reconciliation of the X-ray and NMR structures of the thrombin-bindingaptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 1996; 256:417–422

    Article  PubMed  CAS  Google Scholar 

  7. Wang Y, Patel, DJ. Solution structure of the Oxytricha telomeric repeat d[G4(T4G4)3J G-tetraplex. J Mol Biol 1995; 251:76–94

    Article  PubMed  CAS  Google Scholar 

  8. Smith FW, Feigon J. Strand orientation in the DNA quadraplex formed from the Oxytricha telomere repeat oligonucleotide d(G4T4G4) in solution. Biochemistry 1993; 32:8682–8692

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y, Patel DJ. Solution structure of a parallel-stranded G-quadruplex DNA. J Mol Biol 1993; 234:1171–1183

    Article  PubMed  CAS  Google Scholar 

  10. Schultze P, Smith FW, Feigon J. Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure 1994; 2:221–233

    Article  PubMed  CAS  Google Scholar 

  11. Strahan GD, Shafer RH, Keniry MA Structural properties of the [d(G3T4G3)]2 quadraplex: evidence for sequential syn-syn deoxyguanosines. Nucleic Acids Res 1994; 22:5447–5455

    Article  PubMed  CAS  Google Scholar 

  12. Scaria PV, Shire SJ, Shafer RH. Quadruplex structure of d(G3T4G3) stabilized by K+ or Na+ is an asymmetric hairpin dimer.,Proc Natl Acad Sci USA 1992; 89:10336–10340

    Article  PubMed  CAS  Google Scholar 

  13. Kang C, Zhang X, Ratliff R, Moyzis R, Rich A Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 1992; 356:126–1331

    Article  PubMed  CAS  Google Scholar 

  14. Aboul-ela F, Murchie AIH, Norman DG, Lilley DMJ. Solution structure of a parallel-stranded tetraplex formed by d(TG4T) in the presence of sodium ions by nuclear magnetic resonance spectroscopy. J Mol Biol 1994; 243:458–471

    Article  CAS  Google Scholar 

  15. Laughlan G, Murchie AIH, Norman DG, Moore MH, Moody PCE, Lilley DMJ, Luisi B. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 1994; 265:520–524

    Article  PubMed  CAS  Google Scholar 

  16. Williamson JR. G-quartet structures in telomeric DNA Annu Rev Biophys Biomol Struct 1994; 23:703–730

    Article  PubMed  CAS  Google Scholar 

  17. Cheong C, Moore PB. Solution structure of an unusually stable RNA tetraplex containing G-and U-quartet structures. Biochemistry 1992; 31:8406–8414

    Article  PubMed  CAS  Google Scholar 

  18. Smith FW, Feigon J. Quadruplex structure of Oxytricha telomeric DNA Nature 1992; 356:164–168

    Article  PubMed  CAS  Google Scholar 

  19. Gupta G, Garcia AE, Guo Q, Lu M, Kallenbach NR. Structure of a parallel-stranded tetramer of the Oxytricha telomeric DNA sequence dT4G4. Biochemistry 1993; 32:7098–7103

    Article  PubMed  CAS  Google Scholar 

  20. Sen D, Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 1990; 344:410–414

    Article  PubMed  CAS  Google Scholar 

  21. Wyatt JR, Davis PW, Freier SM. Kinetics of G-quartet-mediated tetramer formation. Biochemistry 1996; 35:8002–8008

    Article  PubMed  CAS  Google Scholar 

  22. Fang G, Cech TR. Characterization of a G-quartet formation reaction promoted by the b-subunit of the Oxytricha telomere-binding protein. Biochemistry 1993; 32:11646–11657

    Article  PubMed  CAS  Google Scholar 

  23. Riesner D, Romer R. “Thermodynamics and kinetics of conformational transitions in oligonucleotides and tRNA.” In Physico-Chemical Properties of Nucleic Acids, J. Duchesne, ed. New York: Academic Press, 1973; pp 237–318.

    Google Scholar 

  24. Venczel EA, Sen D. Parallel and antiparallel G-DNA structures from a complex telomeric sequence. Biochemistry 1993; 32:6220–6228

    Article  PubMed  CAS  Google Scholar 

  25. Marotta SP, Tamburri PA, Sheardy RD. Sequence and environmental effects on the self-assembly of DNA oligomers possessing GxT2Gy segments. Biochemistry 1996; 35:10484–10492

    Article  PubMed  CAS  Google Scholar 

  26. Hud NV, Smith FW, Anet FAL, Feigon J. The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: a thermodynamic analysis by 1H NMR. Biochemistry 1996; 35:15383–15390

    Article  PubMed  CAS  Google Scholar 

  27. Lu M, Guo Q, Kallenbach NR. Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Biochemistry 1992; 31:2455–2459

    Article  PubMed  CAS  Google Scholar 

  28. Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res 1992; 20:4061–4067

    Article  PubMed  CAS  Google Scholar 

  29. Hardin CC, Watson, T, Corregan M, Bailey C. Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG). Biochemistry 1992; 31:833–841

    Article  PubMed  CAS  Google Scholar 

  30. Guo Q, Lu M, Kallenback NR. Effect of thymine tract length on the structure and stability of model telomeric sequences. Biochemistry 1993; 32:3596–3603

    Article  PubMed  CAS  Google Scholar 

  31. Benimetskaya L, Berton M, Kolbanovsky A, Benimetsky S, Stein CA. Formation of a G-tetrad and higher order structures correlates with biological activity of the RelA (NF-kB p65) ‘antisense’ oligodeoxynucleotide. Nucleic Acids Res 1997; 25:2648–2656

    Article  PubMed  CAS  Google Scholar 

  32. Wyatt JR, Vickers TA, Roberson JL, Buckheit RW, Klimkait T, DeBaets E, Davis PW, Rayner B, Imbach JL, Ecker DJ. Combinatorially-selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated fusion. Proc Natl Acad Sci USA 1994; 91:1356–1360

    Article  PubMed  CAS  Google Scholar 

  33. Bennet CF, Chiang MY, Wilson-Lingardo L, Wyatt JR. Sequence-specific inhibition of human type II phospholipase A2 enzyme activity by phosphorothioate oligonucleotides. Nucleic Acids Res 1994; 22:3202–3209

    Article  Google Scholar 

  34. Mazumder A, Neamati N, Ojwang JO, Sunder S, Rando RF, Pommier Y. Inhibition of the human immunodeficiency virus type I integrase by guanosine quartet structures. Biochemistry 1996; 35:13762–13771

    Article  PubMed  CAS  Google Scholar 

  35. Tondelli L, Colonna FP, Garbesi A, Zanella S, Marongiu ME, Comas S, Loi AG, la Colla P. Native oligodeoxynuclotides specifically active against human immunodeficiency virus type I in vitro: a G-quartet driven effect? Antimicrob Agents Chemother 1996; 40:2034–2038.

    PubMed  CAS  Google Scholar 

  36. Bock LC, Griffin LC, Latham JA, Vermass EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992; 355:564–566

    Article  PubMed  CAS  Google Scholar 

  37. Huizenga DE, Szostak JW. A DNA aptamer that binds adenosine and ATP. Biochemistry 1995; 34:656–665

    Article  PubMed  CAS  Google Scholar 

  38. Guvakova MA, Yakubov LA, Vlodavsky I, Tonkinson JL, Stein CA. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995; 270:2620–2627

    Article  PubMed  CAS  Google Scholar 

  39. Basu S, Wickstrom E. Temperature and salt dependence of higher order structure formation by antisense c-myc and c-myb phosphorothioate oligodeoxyribonucleotides containing tetraguanylate tracts. Nucleic Acids Res 1997; 25:1327–1332

    Article  PubMed  CAS  Google Scholar 

  40. Ratajczak M, Kant J, Luger S, Hijiya N, Zhang J, Zon G, Gewirtz A. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1992; 89:11823–11827.

    Article  PubMed  CAS  Google Scholar 

  41. Kim J, Cheong C, Moore PB. Tetramerization of an RNA oligonucleotide containing a GGGG sequence. Nature 1991; 351:331–332

    Article  PubMed  CAS  Google Scholar 

  42. Seela F. 7-deazaguanosine: synthesis of an oligoribonucleotide building block and disaggregation of UGGGGU G4 structure by the modified base. Helv Chem Acta 1993; 76:1435–1449

    Article  CAS  Google Scholar 

  43. Grein T, Lampe S, Mersmann K, Rosemeyer H, Thomas H, Seela F. 3-deaza and 7-deazapurines: duplex stability of oligonucleotides containing modified adenosine or guanine bases. Bioorg Med Chem Lett 1994; 4:971–976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wyatt, J.R., Stein, C.A. (1999). Oligonucleotides Containing the G-Quartet Sequence Motif. In: Rabbani, L.E. (eds) Applications of Antisense Therapies to Restenosis. Perspectives in Antisense Science, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5183-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5183-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7361-2

  • Online ISBN: 978-1-4615-5183-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics