Skip to main content

Triple Helix Formation with Modified Oligonucleotides

  • Chapter
  • 116 Accesses

Part of the book series: Perspectives in Antisense Science ((DARE,volume 2))

Abstract

Significant interest in synthetic oligonucleotides is largely determined by their ability to form specific complexes — duplexes and/or triplexes — with nucleic acid targets of interest, primarily DNA and RNA molecules. The high specificity of these interactions is governed mainly by the formation of proper Watson-Crick and Hoogsteen hydrogen bonds between heterocyclic bases of targeted nucleic acids and the oligonucleotide ligands. This type of selective recognition of genetic information carriers can potentially open up promising new opportunities in modern rational drug design and drug discovery, as well as in the creating of powerful molecular biological and biochemical tools allowing regulation of gene expression and studying of gene functions. However, several very important problems need to be resolved before oligonucleotides may become pharmaceutical agents. Among these are increase of thermodynamic stability of the complexes formed by the oligomers with the targets, specificity of interaction with chosen molecules, hydrolytic stability and bioavailability of oligonucleotides in cells and in model animal systems as well as in human tissues and organs. Additionally, the chemical structure of the oligonucleotides and the choice of suitable and functionally meaningful molecular targets, as well as administration or delivery methods may play a crucial role in the success of oligonucleotide based therapeutic approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckstein, F. (1966). Nucleoside phosphorothioates. J. Am. Chem. Soc. 88, 4292–4293.

    Article  CAS  Google Scholar 

  2. Eckstein, F. (1985). Nucleoside phosphorothioates. Annual Rev. Biochem. 54, 367–402.

    Article  CAS  Google Scholar 

  3. Stec, W. J., Zon, G., Egan, W. and Stec, B. J. (1984). Automated solid phase synthesis, separation and stereochemistry of phosphorothioate analogues of oligodeoxyribonucleotides. J. Am. Chem. Soc. 106, 6077–6079.

    Article  CAS  Google Scholar 

  4. Zon, G. and Stec, W. J. (1991). In Eckstein, F. (Ed.) Oligonucleotides and Analogues: A Practical Approach, IRL Press, Oxford, UK, 87–108.

    Google Scholar 

  5. Glaser, V. (1996). Oligonucleotide therapies move toward efficacy trials to treat HIV, CMV, cancer. Genetic Engineering News 16, February 1, 1–21.

    Google Scholar 

  6. Roush, W. (1997). Antisense aims for a renaissance. Science 276, 1192–1193.

    Article  PubMed  CAS  Google Scholar 

  7. Kebler-Herzog, L., Zon, G., Uznanski, B., Whittier, G. and Wilson, W. D. (1991). Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers. Nucleic Acids Res. 19, 2979–2986.

    Article  Google Scholar 

  8. Koziolkiewicz, M., Krakowiak, A., Kwinkowski, M., Boczkowska, M. and Stec, W. J. (1995). Stereodifferentiation — the effect of P chirality of oligonucleoside phosphorothioates) on the activity of bacterial RNase H. Nucleic Acids Res. 23, 5000–5005.

    Article  PubMed  CAS  Google Scholar 

  9. Xodo, L., Alunni-Fabbroni, M., Manzini, G. and Quadrifoglio, F. (1994). Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Nucleic Acids Res. 22, 3322–3330.

    Article  PubMed  CAS  Google Scholar 

  10. Latimer, L., Hampel, K. and Lee, J. S. (1989). Synthetic repeating sequence DNAs containing phosphorothioates: nuclease sensitivity and triplex formation. Nucleic Acids Res. 17, 1549–1561.

    Article  PubMed  CAS  Google Scholar 

  11. Hacia, J. G., Wold, B. and Dervan, P. B. (1994). Phosphorothioate oligonucleotide-directed triple helix formation. Biochemistry 33, 5367–5369.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, S.-G., Tsukahara, S., Yokoyama, S. and Takaku, H. (1992). The influence of oligodeoxyribonucleotide phosphorothioate pyrimidine strands on triplex formation FEBS Lett. 314, 29–32.

    Article  PubMed  CAS  Google Scholar 

  13. Svinarchuk, F., Debin, A., Bertrand, J.-R. and Malvy, C. (1996). Investigation of the intracellular stability and formation of a triple helix formed with a short purine oligonucleotide targeted to the murine c-pim-1 proto-oncogene promoter. Nucleic Acids Res. 24, 295–302.

    Article  PubMed  CAS  Google Scholar 

  14. Miller, P.S., Yano, J., Yano, E., Carrol, C., Jayraman, K. and Ts’o, P. O. P. (1979). Nonionic nucleic acid analogues. Synthesis and characterization of deoxyribonucleoside methylphosphonates. Biochemistry 18, 5134–5143.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, P.S. (1991). Oligonucleotide methylphosphonates as antisense reagents. Bio/Technology 9, 358–361.

    Article  PubMed  CAS  Google Scholar 

  16. Miller, P. S., Dreon, N., Pulford, S. M. and McParland K. B. (1980). Oligothymidylate analogues having stereoregular, alternating methylphosphonate/phospho-diester backbone. J. Biol. Chem. 255, 9659–9665.

    PubMed  CAS  Google Scholar 

  17. Kibler-Herzog, L., Zon, G., Mizan, S. and Wilson, W. D. (1993). Stabilities of duplexes and triplexes of dA19+dT19 with alternating methylphosphonate and phosphodiester linkages. Anti-Cancer Drug Design 8, 65–79.

    PubMed  CAS  Google Scholar 

  18. Trapane, T., Hogrefe, R. I., Reynolds, M. A., Kan, L.-S. and Ts’o, P. O. P. (1996). Interstrand complex formation of purine oligonucleotides and their nonionic analogues: the model system of d(AG)8 and its complement, d(CT)8. Biochemistry 35, 5495–5508.

    Article  PubMed  CAS  Google Scholar 

  19. Reynolds, M. A., Arnold, L. J., Jr., Almazan, M. T., Beck, T. A., Hogrefe, R. I., Metzler, M. D., Stoughton, S. R., Tseng, B. Y., Trapane, T., Ts’o, P. O. P. and Woolf, T. M. (1994). Triple-strand-forming methylphosphonate oligodeoxynucleotides targeted to mRNA efficiently block protein synthesis. Proc. Natl. Acad. Sci. USA 91, 12433–12437.

    Article  PubMed  CAS  Google Scholar 

  20. Letsinger, R. L., Singman, C. N., Histand, G. and Salunkhe, M. (1988). Cationic oligonucleotides. J. Am. Chem. Soc. 110, 4470–4471.

    Article  CAS  Google Scholar 

  21. Chaturvedi, S., Horn, T. and Letsinger, R. L. (1996). Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. 24, 2318–2323.

    Article  PubMed  CAS  Google Scholar 

  22. Dagle, J. M. and Weeks, D. L. (1996). Positively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation. Nucleic Acids Res. 24, 2143–2149.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng, A.-J. and Van Dyke, M. W. (1993). Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation. Nucleic Acids Res. 21, 5630–5635.

    Article  PubMed  CAS  Google Scholar 

  24. Mignet, N. and Gryaznov, S. M. (1998). Zwitterionic oligodeoxyribonucleotide N3′ →P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. 26, 431–438.

    Article  PubMed  CAS  Google Scholar 

  25. Gryaznov, S. and Chen, J.-K. (1994). Oligodeoxyribonucleotide N3′→P5′ phosphoramidates: synthesis and hybridization properties. J. Am. Chem. Soc. 116, 3143–3144.

    Article  CAS  Google Scholar 

  26. Gryaznov, S. M., Lloyd, D.H., Chen, J.-K., Schultz, R. G., DeDionisio, L. A., Ratmeyer, L. and Wilson, W. D. (1995). Oligonucleotide N3′→P5′ phosphoramidates. Proc. Natl. Acad. Sci. USA 92, 5798–5802.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, J.-K., Schultz, R. G., Lloyd, D. H. and Gryaznov, S. M. (1995). Synthesis of oligodeoxyribonucleotide N3′→P5′ phosphoramidates. Nucleic Acids Res. 23, 2661–2668.

    Article  PubMed  CAS  Google Scholar 

  28. Gryaznov, S. M. (1997). Synthesis and properties of the oligonucleotide N3′→P5′ phosphoramidates. Nucleosides & Nucleotides 16, 899–905.

    Article  CAS  Google Scholar 

  29. Ding, D., Gryaznov, S. M., Lloyd, D. H., Chandrasekaran, S., Yao, S., Ratmeyer, L., Pan, Y. and Wilson, W. D. (1996). An oligodeoxyribonucleotide N3′→P5′ phosphoramidate duplex forms an A-type helix in solution. Nucleic Acids Res. 24, 354–360.

    Article  PubMed  CAS  Google Scholar 

  30. Tereshko, V., Gryaznov, S. and Egli, M. (1998). Consequences of replacing the DNA 3′-oxygen by an amino group: high resolution crystal structure of a fully modified N3′ →P5′ phosphoramidate DNA dodecamer duplex. J. Am. Chem. Soc. 120, 269–283.

    Article  CAS  Google Scholar 

  31. Escudé, C., Giovannangeli, C., Sun, J.-S., Lloyd, D.H., Chen, J.-K., Gryaznov, S. M., Garestier, T. and Hélène, C. (1996). Stable triple helices formed by oligonucleotide N3′→P5′ phosphoramidates inhibit transcription elongation. Proc. Natl. Acad. Sci. USA 93, 4365–4369.

    Article  PubMed  Google Scholar 

  32. Roberts, R. W. and Crothers, D.M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463–1466.

    Article  PubMed  CAS  Google Scholar 

  33. Shimizu, M., Konishi, A., Shimada, Y., Inoue, H. and Ohtsuka, E. (1992). Oligo(2′-O-methyl)ribonucleosides. Effective probes for duplex DNA. FEBS Lett. 302, 155–158.

    Article  PubMed  CAS  Google Scholar 

  34. Guschlbauer, W. and Jankowski, K. (1980). Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res. 8, 1421–1433.

    Article  PubMed  CAS  Google Scholar 

  35. Semerad, C. L. and Maher, L. J., III. (1994). Exclusion of RNA strand from a purine motif triple helix. Nucleic Acids Res. 22, 5321–5325.

    Article  PubMed  CAS  Google Scholar 

  36. Giovannangeli, C., Perrouault, L., Escudé, C., Gryaznov, S. and Hélène, C. (1996). Efficient inhibition of transcription elongation in vitro by oligonucleotide phosphoramidates targeted to proviral HIV DNA. J. Mol. Biol. 261, 386–398.

    Article  PubMed  CAS  Google Scholar 

  37. Giovannangeli, C., Diviacco, S., Labrousse, V., Gryaznov, S., Chameau, P. and Hélène, C. (1997). Accessibility of nuclear DNA to triplex-forming oligonucleotides: the integrated HIV-1 provirus as a target. Proc. Natl. Acad. Sci. USA 94, 79–84.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou-Sun, B.-W., Sun, J.-S., Gryaznov, S. M., Liquier, J., Garestier, T., Hélène, C. and Taillandier, E. (1997). A physico-chemical study of triple helix formation by an oligothymidylate with N3′→P5′ phosphoramidate linkages. Nucleic Acids Res. 25, 1782–1787.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gryaznov, S.M. (1999). Triple Helix Formation with Modified Oligonucleotides. In: Malvy, C., Harel-Bellan, A., Pritchard, L.L. (eds) Triple Helix Forming Oligonucleotides. Perspectives in Antisense Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5177-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5177-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7358-2

  • Online ISBN: 978-1-4615-5177-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics