Advertisement

New Targets for Triple Helix Forming Oligonucleotides

  • J. S. Sun
Part of the Perspectives in Antisense Science book series (DARE, volume 2)

Summary

The recognition of Watson-Crick base paired double-helical DNA by oligonucleotides via triple helix formation was restricted to oligopyrimidine· oligopurine sequences. Progress has been achieved to extend the repertory of DNA sequences which can be recognized by oligonucleotides. This chapter reviews different approaches to solve this molecular recognition problem.

Keywords

Triple Helix Minor Groove Major Groove Cooperative Binding Strand Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, J. S. and Hélène, C. (1993). Oligonucleotide-directed triple helix formation. Curr. Opin. Struct. Biol. 3, 345–356.CrossRefGoogle Scholar
  2. 2.
    Giovannangeli, C., Rougée, M., Montenay-Garestier, T., Thuong, N. T. and Hélène, C. (1992). Triple helix formation by oligonucleotides containing three bases T, C and G. Proc. Natl. Acad. Sci. USA 89, 8631–8635.PubMedCrossRefGoogle Scholar
  3. 3.
    Griffin, L. C. and Dervan, P. B. (1989). Recognition of thymine·adenine base pairs by guanine in a pyrimidine triple helix motif. Science 245, 967–971.PubMedCrossRefGoogle Scholar
  4. 4.
    Mergny, J. L., Sun, J. S., Rougée, M., Montenay-Garestier, T., Barcelo, F., Chomilier, J. and Hélène, C. (1991). Sequence-specificity in triple helix formation: experimental and theoretical studies of the effect of mismatches on triple helix stability. Biochemistry 30, 9791–9798.PubMedCrossRefGoogle Scholar
  5. 5.
    Yoon, K., Hobbs, C. A., Koch, J., Sardaro, M., Kutny, R. and Weis, A. L. (1992). Elucidation of the sequence-specific third strand recognition of four Watson-Crick base pairs in a pyrimidine triple helix motif. Proc. Natl. Acad. Sci. USA 89, 3840–3844.PubMedCrossRefGoogle Scholar
  6. 6.
    Kiessling, L. L., Griffin, L. C. and Dervan, P. B. (1992). Flanking sequence effects within the pyrimidine triple helix motif characterized by affinity cleaving. Biochemistry 31, 2829–2834.PubMedCrossRefGoogle Scholar
  7. 7.
    Best, G. C. and Dervan, P. B. (1995). Energetics of formation of sixteen triple helical complexes which vary at a single position within a pyrimidine motif. J. Am. Chem. Soc. 117, 1187–1193.CrossRefGoogle Scholar
  8. 8.
    Greenberg, W. A. and Dervan, P. B. (1995). Energetics of formation of sixteen triple helical complexes which vary at a single position within a purine motif. J. Am. Chem. Soc. 117, 5016–5022.CrossRefGoogle Scholar
  9. 9.
    Zhou, B. W., Puga, E., Sun, J. S., Garestier, T. and Hélène, C. (1995). Stable triple helices formed by acridine-containing oligonucleotides with oligopurine tracts of DNA interrupted by one or two pyrimidines. J. Am. Chem. Soc. 117, 10425–10428.CrossRefGoogle Scholar
  10. 10.
    Kukreti, S., Sun, J. S., Garestier, T. and Hélène, C. (1997). Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides. Nucleic Acid Res. 25, 4264–4270.PubMedCrossRefGoogle Scholar
  11. 11.
    Kukreti, S., Sun, J. S., Loakes, D., Brown, D.M., Nguyen, C. H., Bisagni, E., Garestier, T. and Hélène, C. (1998). Triple helices formed at oligopyrimidine·oligo-purine sequences with base pair inversions: effect of a triplex-specific ligand on stability and selectivity. Nucleic Acid Res. 26, 2179–2183.PubMedCrossRefGoogle Scholar
  12. 12.
    Horne, D. A. and Dervan, P. B. (1990). Recognition of mixed sequence duplex DNA by alternate-strand triple helix formation. J. Am. Chem. Soc. 112, 2435–2437.CrossRefGoogle Scholar
  13. 13.
    Ono, A., Chen, C. N. and Kan, L. S. (1991). DNA triplex formation of oligonucleotide analogues consisting of linker groups and octamer segments that have opposite sugar-phosphate backbone polarities. Biochemistry 30, 9914–9921.PubMedCrossRefGoogle Scholar
  14. 14.
    McCurdy, S., Moulds, C. and Froehler, B. (1991). Deoxyoligonucleotides with inverted polarity: synthesis and use in triple helix formation. Nucleosides Nucleotides 10, 287–290.CrossRefGoogle Scholar
  15. 15.
    Froehler, B., Terhorst, T., Shaw, J. P. and McCurdy, S. N. (1992). Triple helix formation and cooperative binding by oligodeoxynucleotides with a 3′-3′ internucleotide junction. Biochemistry 31, 1603–1609.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou, B. W., Marchand, C., Asseline, U., Thuong, N. T., Sun, J. S., Garestier, T. and Hélène, C. (1995). Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages. Bioconjugate Chem. 6, 516–523.CrossRefGoogle Scholar
  17. 17.
    Marchand, C., Cristol, N., Asseline, U., Sun, J. S., Garestier, T. and Hélène, C. (1998). Manuscript in preparation.Google Scholar
  18. 18.
    Sun, J. S., de Bizemont, T., Duval-Valentin, G., Montenay-Garestier, T. and Hélène, C. (1991). Extension of the range of recognition sequence for triple helix formation by oligonucleotides containing guanines and thymines. C. R. Acad. Sci. Paris Sér. III 313, 585–590.Google Scholar
  19. 19.
    Beal, P. A. and Dervan, P. B. (1992). Recognition of double helical DNA by alternate-strand triple helix formation. J. Am. Chem. Soc. 114, 4976–4982.CrossRefGoogle Scholar
  20. 20.
    Jayasena, S. D. and Johnston, B. H. (1992). Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate-strand recognition. Nucleic Acids Res. 20, 5279–5288.PubMedCrossRefGoogle Scholar
  21. 21.
    Jayasena, S.D. and Johnston, B. H. (1993). Sequence limitations of triple helix formation by alternate-strand recognition. Biochemistry 32, 2800–2807.PubMedCrossRefGoogle Scholar
  22. 22.
    Washbrook, E. and Fox, K. R. (1994). Comparison of antiparallel A·AT and T·AT triplets within an alternate-strand DNA triple helix. Nucleic Acids Res. 22, 3977–3982.PubMedCrossRefGoogle Scholar
  23. 23.
    Washbrook, E. and Fox, K. R. (1994). Alternate-strand DNA triple helix formation using acridine-linked oligonucleotides. Biochem. J. 301, 569–575.PubMedGoogle Scholar
  24. 24.
    Olivas, W. M. and Maher, L. J., III. (1994). DNA recognition by alternate-strand triple helix formation: affinities of oligonucleotides for a site in the human p53 gene. Biochemistry 33, 983–991.PubMedCrossRefGoogle Scholar
  25. 25.
    de Bizemont, T., Duval-Valentin, G., Sun, J. S., Bisagni, E., Garestier, T. and Hélène, C. (1996). Alternate-strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand. Nucleic Acids Res. 24, 1136–1143.PubMedCrossRefGoogle Scholar
  26. 26.
    Olivas, W. M. and Maher, L. J. (1996). Binding of DNA oligonucleotides to sequences in the promoter of the human bcl-2 gene. Nucleic Acids Res. 24, 1758–1764.PubMedCrossRefGoogle Scholar
  27. 27.
    Balatskaya, S. V., Belotserkovskii, B. P. and Johnston, B. H. (1996). Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu·PuxPy block. Biochemistry 35, 13328–13337.PubMedCrossRefGoogle Scholar
  28. 28.
    Bouziane, M., Cherny, D. I., Mouscadet, J. F. and Auclair, C. (1996). Alternate-strand DNA triple helix-mediated inhibition of HIV-1 U5 long terminal repeat integration in vitro. J. Biol. Chem. 271, 10359–10364.PubMedCrossRefGoogle Scholar
  29. 29.
    Sun, J. S. (1995). “Rational design of switched triple helix-forming oligonucleotides: extension of sequences for triple helix formation.” In Modeling of Biomolecular Structures and Mechanisms, Pullman, A., Pullman, B. and Jortner, J. eds. Kluwer Academic Publishers, Amsterdam, 267–288.CrossRefGoogle Scholar
  30. 30.
    Marchand, C., Sun, J. S., Bailly, C., Waring, M. J., Garestier, T. and Hélène, C. (1998). Optimization of alternate-strand triple helix formation at the 5′CpG3′ and 5′GpC3′ junction steps. Biochemistry 37, in press.Google Scholar
  31. 31.
    de Bizemont, T., Sun, J. S., Garestier, T. and Hélène, C. (1998). New junction models for alternate-strand triple helix formation. Chem. Biol., submitted.Google Scholar
  32. 32.
    Colocci, N. and Dervan, P. B. (1995). Cooperative triple helix formation at adjacent DNA sites: sequence composition dependence at the junction. J. Am. Chem. Soc. 117, 4781–4787.CrossRefGoogle Scholar
  33. 33.
    Akiyama, T. and Hogan, M. E. (1996). The design of an agent to bend DNA. Proc. Natl. Acad. Sci. USA 93, 12122–12127.PubMedCrossRefGoogle Scholar
  34. 34.
    Akiyama, T. and Hogan, M. E. (1996). Microscopic DNA flexibility analysis. Probing the base composition and ion dependence of minor groove compression with an artificial DNA bending agent. J. Biol. Chem. 271, 29126–29135.PubMedCrossRefGoogle Scholar
  35. 35.
    Akiyama, T. and Hogan, M. E. (1997). Structural analysis of DNA bending induced by tethered triple helix forming oligonucleotides. Biochemistry 36, 2307–2315.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • J. S. Sun

There are no affiliations available

Personalised recommendations