DNA Triple Helix as a Tool to Regulate Cytokine Gene Expression

  • Marina Kochetkova
  • Mary Frances Shannon
Part of the Perspectives in Antisense Science book series (DARE, volume 2)


The recognition of promoter DNA by proteins plays a central role in the regulation of gene expression (1). Methods or agents that can selectively alter the interaction of a protein at a certain site on DNA could potentially modulate the transcription of a gene. Changes in the rate of transcription are an important mechanism of regulation of gene expression. In cases of undesirable overexpression of proteins implicated in disease, transcriptional repressors represent potential therapeutic agents.


Transcription Factor Binding Site Luciferase Reporter Construct Juvenile Myelomonocytic Leukemia Triplex Formation Triple Helix Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dynan, W. S. and Tjian, R. (1985). Control of eukaryotic messenger RNA synthesis by protein specific DNA binding proteins. Nature 316, 774–777.PubMedCrossRefGoogle Scholar
  2. 2.
    Cooney, M., Chernuszewicz, C., Postel, E. H., Flint S. J. and Hogan, M. E. (1988). Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science (Wash. DC) 241, 456–459.CrossRefGoogle Scholar
  3. 3.
    Helene, C., Thuong, N. T. and Harel-Bellan, A. (1992). Control of gene expression by triple helix-forming oligonucleotides. The antigène strategy. Ann. NY Acad. Sci. 660, 27–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Stull, R. A. and Szoka F. C. (1995). Antigène, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm. Res. (NY). 12, 465–483.CrossRefGoogle Scholar
  5. 5.
    Maher, L. J., III (1996). Prospects for the therapeutic use of antigène oligonucleotides. Cancer Invest. 14, 66–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Henderson, B. and Blake, S. (1992). Therapeutic potential of cytokine manipulation. Trends Pharmacol. Sci. 13, 145–152.PubMedCrossRefGoogle Scholar
  7. 7.
    Stanley, E., Lieschke, G. J., Drail, D., Metcalf, D., Hodgson, G., Gall, J. A. M., Maher, D.W., Cebon, J., Sinickas, V. and Dunn, A. R. (1994). Granulocyte-macrophage colony-stimulating factor-deficient mice show no major perturbation of haematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci.USA 91, 5592–5598.PubMedCrossRefGoogle Scholar
  8. 8.
    Frolova, E. I., Dolganov, G. M., Mazo, I. A., Copeland, P., Stewart, C., O’Brien, S. J. and Dean, M. (1991). Linkage mapping of the human CSF2 and IL3 genes. Proc. Natl. Acad. Sci.USA 88, 4821–4824.PubMedCrossRefGoogle Scholar
  9. 9.
    Gualtieri, R. G., Emanuel, P.D., Zuckerman, K. S., Martin, G., Clark, S. C., Shadduck, R. K., Dracker, R. A., Akabutu, R., Nitschke, R., Hetherington, M. L., et al. (1989). Granulocyte-macrophage colony-stimulating factor is an endogenous regulator of cell proliferation in juvenile chronic myelogenous leukemia. Blood 74, 925–929.Google Scholar
  10. 10.
    Young, D. C., Wagner, K. and Griffin, J. D. (1987). Constitutive expression of the granulocyte-macrophage colony-stimulating factor gene in acute myeloblastic leukemia. J. Clin. Invest. 79, 100–104.PubMedCrossRefGoogle Scholar
  11. 11.
    Gasson, J. C. (1991). Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77, 1131–1145.PubMedGoogle Scholar
  12. 12.
    Kochetkova, M., Iverson, P. O., Lopez, A. F. and Shannon M. F. (1997). DNA triplex formation inhibits granulocyte-macrophage colony-stimulating factor gene expression and suppresses growth in Juvenile myelomonocytic leukemic cells. J. Clin. Invest. 99, 3000–3008.PubMedCrossRefGoogle Scholar
  13. 13.
    Shannon, M. F., Coles, L. S., Vadas, M. A. and Cockerill, P. N. (1997). Signal for activation of the granulocyte-macrophage colony-stimulating factor gene promoter and enhancer in T cells. Critical Reviews Immunol. 17, 301–323.CrossRefGoogle Scholar
  14. 14.
    Kochetkova, M. and Shannon, M. F. (1996). DNA triplex formation selectively inhibits granulocyte-macrophage colony-stimulating factor gene expression in T cells. J. Biol. Chem. 271, 14438–14444.PubMedCrossRefGoogle Scholar
  15. 15.
    Orson, F. M., Thomas, D.W., McShan, W. M., Kesler, D. J. and Hogan, M. E. (1991). Oligonucleotide inhibition of IL2Rα mRNA transcription by promoter region collinear triplex formation in lymphocytes. Nucleic Acids Res. 19, 3435–3441.PubMedCrossRefGoogle Scholar
  16. 16.
    Kochetkova, M. and Shannon, M. F. (1998). DNA triplex formation on the granulocyte-macrophage colony-stimulating factor gene proximal promoter. Nucleosides, Nucleotides. In press.Google Scholar
  17. 17.
    Durland, R. H., Rao, T. S., Revankar, G. R., Tinsley, J. H., Myric, A. M., Seth, D. M., Rayford, J., Singh, P. and Jayaraman, K. (1994). Binding of T and T analogs to CG base pairs in antiparallel triplexes. Nucleic Acids Res. 22, 3233–3240.PubMedCrossRefGoogle Scholar
  18. 18.
    Cockerill, P. N., Shannon, M. F., Bert, A. G., Ryan, G. R. and Vadas, M. A. (1993). The granulocyte-macrophage colony-stimulating factor / interleukin 3 locus in regulated by an inducible cyclosporin A sensitive enhancer. Proc. Natl. Acad. Sci. USA 90, 2466–2470.PubMedCrossRefGoogle Scholar
  19. 19.
    Cockerill, P. N., Bert, A. G., Jenkins, F., Ryan, G. R., Shannon, M. F. and Vadas, M. A. (1995). Human granulocyte-macrophage colony-stimulating factor enhancer function is associated with cooperative interactions between AP1 and NFATp/c. Mol. Cell. Biol. 15, 2071–2080.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Marina Kochetkova
  • Mary Frances Shannon

There are no affiliations available

Personalised recommendations