Skip to main content

Neuroendocrine Control of Growth Hormone Secretion

  • Chapter
Book cover Growth Hormone

Part of the book series: Endocrine Updates ((ENDO,volume 4))

  • 215 Accesses

Abstract

Growth hormone (GH), like many other pituitary hormones, is released from the pituitary in a highly episodic manner. In the conscious male rat, the pulsatile pattern of GH secretion is particularly striking, with high amplitude pulses occurring regularly, once every 3–4 h (Tannenbaum & Martin, 1976). The pattern of GH secretion reflects a changing balance in the output of two neuroendocrine systems: the GH-releasing hormone (GRF) neurones, which stimulate GH secretion (Guillemin et al. 1982; Rivier et al. 1982) and the somatostatin neurones, which inhibit GH secretion (Brazeau et al. 1973). GRF and somatostatin are released into portal blood at the median eminence and are then transported to the anterior pituitary where they bind to different receptors on the somatotroph cells. Passive immunization studies have established that GRF and somatostatin control different aspects of the GH secretory pattern: GRF controls GH pulse amplitude and its release is a prerequisite for pulsatile GH secretion whereas somatostatin is important for regulating the period between pulses (see Jansson et al. 1985). Somatostatin also appears to be involved in the GH pulse generating mechanism, since a pulsatile pattern of GH secretion can be generated by an intermittent intravenous infusion of somatostatin, in which GH pulses occurred when delivery of somatostatin was interrupted for a short period every 3 hours (Clark & Robinson 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Molitch ME, Van-Wyk JJ, Underwood LE. Human growth hormone and somatomedin C suppress the spontaneous release of growth hormone in unanesthetized rats. Endocrinology 1983;113:1319–1324

    Article  PubMed  CAS  Google Scholar 

  • Akira S, Wakabayashi I Sugihara H, Minami S, Takahashi F, Motoyama A. Effect of testosterone on growth hormone secretion in female rats during a continuous infusion of growth hormone releasing factor. Neuroendocrinology 1988;47:116–124

    Article  PubMed  CAS  Google Scholar 

  • Aquila MC. Insulin-like growth factor I (IGF-I) regulates somatostatin (SRIF) release, messenger ribonucleic acid levels in the rat hypothalamus. Proceedings of the 73rd Annual Meeting of the Endocrine Society, 1991, P351

    Google Scholar 

  • Argente J, Chowen-Breed JA, Steiner RA, Clifton DK. Somatostatin messenger RNA in hypothalamic neurons is increased by testosterone through activation of androgen receptors and not by aromatization to estradiol. Neuroendocrinology 1990;52:342–349

    Article  PubMed  CAS  Google Scholar 

  • Argente J, Chowen JA, Zeitler P, Clifton DK, Steiner RA. Sexual dimorphism of growth hormone-releasing hormone and somatostatin gene expression in the hypothalamus of the rat during development. Endocrinology 1991;128:2369–2375

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Broadwell RD. Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: pharmacokinetic and morphological assessments. J Neurochem 1994;62:2404–2419

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A, Tannenbaum GS. Expression of SSTR1 and SSTR2 in rat hypothalamus: correlation with receptor binding and distribution of growth hormone regulatory peptides. Ciba Found Symp 1995;190:142–152

    PubMed  CAS  Google Scholar 

  • Bowers CY, Momany FA, Reynolds GA, Hong A. On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology 1984;114:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic Polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973;179:77–79

    Article  PubMed  CAS  Google Scholar 

  • Burton KA, Kabigting EB, Clifton DK, Steiner RA. Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology 1992;131:958–963

    Article  PubMed  CAS  Google Scholar 

  • Burton KA, Kabigting EB, Steiner RA, Clifton DK. Identification of target cells for growth hormone’s action in the arcuate nucleus. Am J Physiol 1995;269: E716–E722

    PubMed  CAS  Google Scholar 

  • Carlsson LMS, Clark RG, Robinson ICAF. Sex difference in growth hormone feedback in the rat. J Endocrinol 1990;126:27–35

    Article  PubMed  CAS  Google Scholar 

  • Carlsson LMS, Jansson J-O. Endogenous growth hormone (GH) secretion in male rats is synchronized to pulsatile GH infusions given at 3-hour intervals. Endocrinology 1990;126:6–10

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Señaris R, Considine RV, Casanueva FF, Dieguez C. Regulation of in vivo growth hormone secretion by leptin. Endocrinology 1997;138:2203–2206

    Article  PubMed  CAS  Google Scholar 

  • Ceda GP, Davis RG, Rosenfeld RG, Hoffman AR. The growth hormone (GH)-releasing hormone (GHRH)-GH-somatomedin axis: evidence for rapid inhibition of GHRH-elicited GH release by insulin-like growth factors I and II. Endocrinology 1987;120:1658–1662

    Article  PubMed  CAS  Google Scholar 

  • Chihara K, Minamitani N, Kaji H, Arimura A, Fujita T. Intraventricularly injected growth hormone stimulates somatostatin release into rat hypophysial portal blood. Endocrinology 1981;109:2279–2281

    Article  PubMed  CAS  Google Scholar 

  • Clark RG, Robinson ICAF. Growth hormone responses to multiple injections of a fragment of human growth hormone-releasing factor in conscious male and female rats. J Endocrinol 1985;106:281–289

    Article  PubMed  CAS  Google Scholar 

  • Clark RG, Carlsson LMS, Robinson ICAF. Growth hormone secretory profiles in conscious female rats. J Endocrinol 1987;114:399–407

    Article  PubMed  CAS  Google Scholar 

  • Clark RG, Carlsson LMS, Rafferty B, Robinson ICAF. The rebound release of growth hormone (GH) following somatostatin infusion in rats involves hypothalamic GH-releasingfactor release. J Endocrinol 1988;119:397–404

    Article  PubMed  CAS  Google Scholar 

  • Clark RG, Robinson ICAF. Paradoxical growth-promoting effects induced by patterned infusions of somatostatin in female rats. Endocrinology 1988;122:2675–2682

    Article  PubMed  CAS  Google Scholar 

  • Clark RG, Carlsson LMS, Robinson ICAF. Growth hormone (GH) secretion in the conscious rat: negative feedback of GH on its own release. J Endocrinol 1988;119:201–209

    Article  PubMed  CAS  Google Scholar 

  • Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy GB. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401

    Article  PubMed  CAS  Google Scholar 

  • Conway S, McCann SM, Krulich L. On the mechanism of growth hormone autofeedback regulation: possible role of somatostatin and growth hormonereleasing factor. Endocrinology 1985;117:2284–2292

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Leng G, Robinson ICAF. Systemic administration of growth hormonereleasing peptide activates hypothalamic arcuate neurons. Neuroscience 1993;53:303–306

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Leng G, Robinson ICAF. Electrical stimulation of the rat periventricular nucleus influences the activity of hypothalamic arcuate neurones. J Neuroendocrinol 1994;6:359–367

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Leng G, Dyball RE, Smith RG. Central actions of peptide and nonpeptide growth hormone secretagogues in the rat. Neuroendocrinology 1995;61:36–43

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Doutrelant-Viltart O, Dyball RE, Leng G. Retrogradely labelled neurosecretory neurones of the rat hypothalamic arcuate nucleus express Fos protein following systemic injection of GH-releasing peptide-6. J Endocrinol 1996;151:323–331

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Viltart O, Bailey ART, Leng G. Attenuation of the growth hormone secretagogue induction of Fos protein in the rat arcuate nucleus by central somatostatin action. Neuroendocrinology 1997;66:188–194

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Luckman SM. Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GHreleasing peptide-6. Endocrinology 1997;138:771–777

    Article  PubMed  CAS  Google Scholar 

  • Edén S. Age-and sex-related differences in episodic growth hormone secretion in the rat. Endocrinology 1979;105:555–560

    Article  PubMed  Google Scholar 

  • Epelbaum J, Moyse E, Tannenbaum GS, Kordon C, Beaudet A. Combined autoradiographic and immunohistochemical evidence for an association of somatostatin binding sites with growth hormone-releasing factor nerve cell bodies in the rat arcuate nucleus. J Neuroendocrinol 1989;1:109–115

    Article  PubMed  CAS  Google Scholar 

  • Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 1996;381:415–421

    Article  PubMed  CAS  Google Scholar 

  • Fodor M, Csaba Z, Kordon C, Epelbaum J. Growth hormone-releasing hormone, somatostatin, galanin and beta-endorphin afferents to the hypothalamic periventricular nucleus. J Chem Neuroanat 1994;8:61–73

    Article  PubMed  CAS  Google Scholar 

  • Gammeltoft S, Haselbacher GK, Humbel RE, Fehlmann M, Van-Obberghen E. Two types of receptor for insulin-like growth factors in mammalian brain. EMBO J 1985;4:3407–3412

    PubMed  CAS  Google Scholar 

  • Goodyer CG, De-Stephano L, Guyda HJ, Posner BI. Effects of insulin-like growth factors on adult male rat pituitary function in tissue culture. Endocrinology 1984;115:1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R, Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 1982;218:585–587

    Article  PubMed  CAS  Google Scholar 

  • Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci 1998;18:559–572

    PubMed  CAS  Google Scholar 

  • Harel Z, Tannenbaum GS. Centrally administered insulin-like growth factor II fails to alter pulsatile growth hormone secretion or food intake. Neuroendocrinology 1992;56:161–168

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa O, Sugihara H, Minami S, Wakabayashi I. Masculinization of growth hormone (GH) secretory pattern by dihydrotestosterone is associated with augmentation of hypothalamic somatostatin and GH-releasing hormone mRNA levels in ovariectomized adult rats. Peptides 1992;13:475–481

    Article  PubMed  CAS  Google Scholar 

  • Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 1987;64:51–58

    Article  PubMed  CAS  Google Scholar 

  • Horvath S, Palkovits M, Gorcs T, Arimura A. Electron microscopic immunocytochemical evidence for the existence of bidirectional synaptic connections between growth hormone-releasing hormone-and somatostatincontaining neurons in the hypothalamus of the rat. Brain Res 1989;481:8–15

    Article  PubMed  CAS  Google Scholar 

  • Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJS, Dean DC, Melillo DG, Van-der-Ploeg LH, Smith RG. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996;273:974–977

    Article  PubMed  CAS  Google Scholar 

  • Howard CP. “Endocrinology of puberty.”. In: “Adolescent medicine”, Appleton & Lange, 1989. pp 17–20.

    Google Scholar 

  • Ishikawa K, Taniguchi Y, Kurosumi K, Suzuki M, Shinoda M. Immunohistochemical identification of somatostatin-containing neurons projecting to the median eminence of the rat. Endocrinology 1987;121:94–97

    Article  PubMed  CAS  Google Scholar 

  • Jacobowitz DM, Schulte H, Chrousos GP, Loriaux DL. Localization of GRF-like immunoreactive neurons in the rat brain. Peptides 1983;4:521–524

    Article  PubMed  CAS  Google Scholar 

  • Jaffe CA, Ocampo-Lim B, Guo W, Krueger K, Sugahara I, DeMott-Friberg R, Barkan AL. Regulatory mechanisms of growth hormone secretion are sexually dimorphic. J Clin Invest 1998;102:153–164

    Article  PubMed  CAS  Google Scholar 

  • Jansson J-O, Ekberg S, Isaksson OG, Edén S. Influence of gonadal steroids on ageand sex-related secretory patterns of growth hormone in the rat. Endocrinology 1984;114:1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Jansson J-O, Edén S, Isaksson O. Sexual dimorphism in the control of growth hormone secretion. Endocr Rev 1985;6:128–150

    Article  PubMed  CAS  Google Scholar 

  • Jansson J-O, Frohman LA. Differential effects of neonatal and adult androgen exposure on the growth hormone secretory pattern in male rats. Endocrinology 1987;120:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Jansson J-O, Svensson J, Bengtsson B-Å, Frohman LA, Ahlman H, Wangberg B, Nilsson O, Nilsson M. Acromegaly and Cushing’s syndrome due to ectopic production of GHRH and ACTH by a thymic carcinoid tumour: in vitro responses to GHRH and GHRP-6. Clin Endocrinol Oxf 1998;48:243–250

    Article  PubMed  CAS  Google Scholar 

  • Johansson O, Hökfelt T, Eide RP. Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 1984;13:265–339

    Article  PubMed  CAS  Google Scholar 

  • Katakami H, Arimura A, Frohman LA. Growth hormone (GH)-releasing factor stimulates hypothalamic somatostatin release: an inhibitory feedback effect on GH secretion. Endocrinology 1986;118:1872–1877

    Article  PubMed  CAS  Google Scholar 

  • Maiter DM, Gabriel SM, Koenig JI, Russell WE, Martin JB. Sexual differentiation of growth hormone feedback effects on hypothalamic growth hormone-releasing hormone and somatostatin. Neuroendocrinology 1990;51:174–180

    Article  PubMed  CAS  Google Scholar 

  • Mercer JG, Moar KM, Rayner DV, Trayhurn P, Hoggard N. Regulation of leptin receptor and NPY gene expression in hypothalamus of leptin-treated obese (ob/ob) and cold-exposed lean mice. FEBS Lett 1997;402:185–188

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler I. Neurons with access to the general circulation in the central nervous system of the rat: a retrograde tracing study with fluoro-gold. Neuroscience 1991;44:655–662

    Article  PubMed  CAS  Google Scholar 

  • Minami S, Kamegai J, Sugihara H, Hasegawa O, Wakabayashi I. Systemic administration of recombinant human growth hormone induces expression of the c-fos gene in the hypothalamic arcuate and periventricular nuclei in hypophysectomized rats. Endocrinology 1992;131:247–253

    Article  PubMed  CAS  Google Scholar 

  • Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387:903–908

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Kato Y, Kabayama Y, Inoue T, Koshiyama H, Imura H. Involvement of hypothalamic growth hormone (GH)-releasing factor in GH secretion induced by intracerebroventricular injection of somatostatin in rats. Endocrinology 1987;120:311–316

    Article  PubMed  CAS  Google Scholar 

  • Niall HD. Revised primary structure for human growth hormone. Nat New Biol 1971;230:90–91

    PubMed  CAS  Google Scholar 

  • Okada K, Wakabayashi I, Sugihara H, Minami S, Kitamura T, Yamada J. Electrical stimulation of hypothalamic periventricular nucleus is followed by a large rebound secretion of growth hormone in unanesthetized rats. Neuroendocrinology 1991;53:306–312

    Article  PubMed  CAS  Google Scholar 

  • Painson JC, Thorner MO, Krieg RJ, Tannenbaum GS. Short-term adult exposure to estradiol feminizes the male pattern of spontaneous and growth hormonereleasing factor-stimulated growth hormone secretion in the rat. Endocrinology 1992;130:511–519

    Article  PubMed  CAS  Google Scholar 

  • Pierroz DD, Catzeflis C, Aebi AC, Rivier JE, Aubert ML. Chronic administration of neuropeptide Y into the lateral ventricle inhibits both the pituitary-testicular axis and growth hormone and insulin-like growth factor I secretion in intact adult male rats. Endocrinology 1996;137:3–12

    Article  PubMed  CAS  Google Scholar 

  • Richman RA, Weiss JP, Hochberg Z, Florini JR. Regulation of growth hormone release: evidence against negative feedback in rat pituitary cells. Endocrinology 1981;108:2287–2292

    Article  PubMed  CAS  Google Scholar 

  • Rivier J, Spiess J, Thorner M, Vale W. Characterization of a growth hormonereleasing factor from a human pancreatic islet tumour. Nature 1982;300:276–278

    Article  PubMed  CAS  Google Scholar 

  • Roselli CE, Handa RJ, Resko JA. Quantitative distribution of nuclear androgen receptors in microdissected areas of the rat brain. Neuroendocrinology 1989;49:449–453

    Article  PubMed  CAS  Google Scholar 

  • Roselli CE. Sex differences in androgen receptors and aromatase activity in microdissected regions of the rat brain. Endocrinology 1991;128:1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Chihara K, Kita T, Kashio Y, Okimura Y, Kitajima N, Fujita T. Physiological role of somatostatin-mediated autofeedback regulation for growth hormone: importance of growth hormone in triggering somatostatin release during a trough period of pulsatile growth hormone release in conscious male rats. Neuroendocrinology 1989;50:139–151

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Rivier J, Vale WW. The distribution of growthhormone-releasing factor (GRF) immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GRF. J Comp Neurol 1985;237:100–115

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki T, Yamauchi N, Hotta M, Masuda A, Imaki T, Demura H, Ling N, Shizume K. In vitro release of growth hormone-releasing factor from rat hypothalamus: effect of insulin-like growth factor-1. Regul Pept 1986;15:47–53

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS, Martin JB. Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology 1976;98:562–570

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS, Rorstad O, Brazeau P. Effects of prolonged food deprivation on the ultradian growth hormone rhythm and immunoreactive somatostatin tissue levels in the rat. Endocrinology 1979;104:1733–1738

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS. Evidence for autoregulation of growth hormone secretion via the central nervous system. Endocrinology 1980;107:2117–2120

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS. Growth hormone secretory dynamics in streptozotocin diabetes: evidence of a role for endogenous circulating somatostatin. Endocrinology 1981;108:76–82

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS, Ling N. The interrelationship of growth hormone (GH)-releasing factor and somatostatin in generation of the ultradian rhythm of GH secretion. Endocrinology 1984;115:1952–1957

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS. Interrelationship of somatostatin and growth hormone-releasing hormone in the genesis of the rhythmic secretion of growth hormone. Acta Paediatr Scand Suppl 1990;367:76–80

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS, Zhang WH, Lapointe M, Zeitler P, Beaudet A. Growth hormonereleasing hormone neurons in the arcuate nucleus express both SST1 and SST2 somatostatin receptor genes. Endocrinology 1998;139:1450–1453

    Article  PubMed  CAS  Google Scholar 

  • Vuagnat BAM, Pierroz DD, Lalaoui M, Englaro P, Pralong FP, Blum WF, Aubert ML. Evidence for a leptin-neuropeptide Y axis for the regulation of growth hormone secretion in the rat. Neuroendocrinology (in press).

    Google Scholar 

  • Willoughby JO, Brogan M, Kapoor R. Hypothalamic interconnections of somatostatin and growth hormone releasing factor neurons. Neuroendocrinology 1989;50:584–591

    Article  PubMed  CAS  Google Scholar 

  • Winer LM, Shaw MA, Baumann G. Basal plasma growth hormone levels in man: new evidence for rhythmicity of growth hormone secretion. J Clin Endocrinol Metab 1990;70:1678–1686

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Bailey ART, Jiang MH, Honda K, Chen HY, Trumbauer ME, Van der-Ploeg LH, Schaeffer JM, Leng G, Smith RG. Somatostatin receptor subtype 2 knockout mice are refractory to growth hormone-negative feedback on arcuate neurons. Mol Endocrinol 1997;11:1709–1717

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jansson, JO., Dickson, S.L. (1999). Neuroendocrine Control of Growth Hormone Secretion. In: Bengtsson, BÅ. (eds) Growth Hormone. Endocrine Updates, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5163-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5163-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7351-3

  • Online ISBN: 978-1-4615-5163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics