Effects of Environmental Metal and Metalloid Pollutants on Human Health

  • Maria E. Ariza
  • Gautam N. Bijur
  • Marshall V. Williams

Abstract

There is no doubt that exposure of humans to high concentrations of metal and metalloid compounds results in the development of specific diseases and in some cases death. Blackfoot disease, hard metal lung disease, itai-itai and Minamata disease are well characterized diseases that are associated with metal exposure. Acute or chronic exposure to metal and metalloid compounds can result in damage to essentially all organ systems. Metal and metalloid ions are hepatotoxic, nephrotoxic and neurotoxic. They can adversely effect the functioning of the endrocrine, hematopoietic, immune, respiratory and reproductive systems. In today’s society, however, exposure to high, cytotoxic concentrations of metal or metalloid compounds is extremely rare. Conversely, everyone is chronically exposed to low non-lethal concentrations of metal and metalloid compounds. While concerns have been raised regarding the potential health risks associated with such exposure, this concept remains controversial. In this chapter, information is presented concerning the potential role(s) that low non-lethal concentrations of metal and metalloid pollutants may have in certain human disease.

Keywords

Zinc Mercury Chromium Dopamine Cobalt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlbom A., Norell S., Rodual Y. and Nylander M. (1986). Dentists, dental nurses and brain tumors. B.M.F. 292:662–663.CrossRefGoogle Scholar
  2. Ariza ME, Bijur GN, Williams, M.V. 1998. Lead and mercury mutagenesis: role of H2O2, superoxide dismutase and xanthine oxidase. Environ. Mol. Mutagen. 31:352–361Google Scholar
  3. Armstrong R.A., Winsper S.J. and Blair J.A. (1996). Aluminum and Alzheimer’sdisease: review of possible pathogenic mechanisms. Dementia 7: 1–9.PubMedGoogle Scholar
  4. Bates M.N., Smith A.H. and Hopenhayn-Rich C. (1992). Arsenic ingestion and internal cancers: a review. Am. J. Epidemiol. 135:462–476.PubMedGoogle Scholar
  5. Beyersmann D. (1994). Interactions in metal carcinogenicity. Toxicol. Lett. 72:333–338.PubMedCrossRefGoogle Scholar
  6. Blazka M.E., Harry G.J. and Luster M.I. (1994). Effects of lead acetate on nitrite production by murine brain endothelial cell cultures. Toxicol. Appl. Pharmacol. 126:191–194.PubMedCrossRefGoogle Scholar
  7. Bondy S.C., Guo-Ross S.X. and Truong A.T. (1998). Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res. 799: 91–96.PubMedCrossRefGoogle Scholar
  8. Bush A.I., Pettingell W.H., Multhaup G., Paradis M.D., Vonsattel J.P., Gusella J.F., Beyreuther K., Masters C.L. and Tanzi, R.E. (1994). Rapid induction of Alzheimer’s A beta amyloid formation by zinc. Science 265:1464–1467.PubMedCrossRefGoogle Scholar
  9. Cohen M.D., Bower D.H. and Costa M. (1996). In Toxicology of Metals. L.W. Cheng (ed.). CRC Lewis Publishers, Boca Raton FL. pp. 253–284.Google Scholar
  10. Connor J.R., Menzies, S.L., St. Martin S.L. and Mufson E.J. (1990). Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J. Neurosci. Res. 27: 595–611.PubMedCrossRefGoogle Scholar
  11. Conner J.R., Tucker M., Johnson B. and Snyder B. (1993). Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease. Neurosci. Lett. 159: 88–90.CrossRefGoogle Scholar
  12. Dexter D.T., Carayon A., Javoy-Agid F., Agid Y., Wells F.R., Daniels S.E., Lees A.J., Jenner P. and Marsden, C.D. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975.PubMedCrossRefGoogle Scholar
  13. Diebel M.A., Ehmann W.D. and Markesberry, W.R. (1996). Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease:possible relation to oxidative stress. J. Neurol. Sci. 143: 137–142.CrossRefGoogle Scholar
  14. Gerlach M., Ben-Shachar D., Riederer P. and Youdim M.B.H. (1994). Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem. 63: 793–807.PubMedCrossRefGoogle Scholar
  15. Gorman A.M., McGowan A., O’Neill C. and Cotter, T. (1996) Oxidative stress and apoptosis in neurodegeneration. J. Neurol. Sci. 139: 45–52.PubMedCrossRefGoogle Scholar
  16. Gonick H.C., Ding Y., Bondy S.C., Zhenmin N. and Vaziri D. (1997). Lead-induced hypertension. Interplay of nitric oxide and reactive oxygen species. Hypertension 30:1487–1492.PubMedCrossRefGoogle Scholar
  17. Hartwig A. (1995). Current aspects in metal genotoxicity. BioMetals 8:3–11.PubMedCrossRefGoogle Scholar
  18. Hassoun P.M., Yu F.S., Zulueta J.J., White A.C., Lanzillo J.J. (1995). Effect of nitric acid and cell redox status on the regulation of endothelial cell xanthine dehydrogenase. Am. J. Physiol. 268:L809–L817.PubMedGoogle Scholar
  19. Hayes R.B. (1997). The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385.PubMedCrossRefGoogle Scholar
  20. Hertz-Picciotto I. and Croft J. (1993). Review of the relation between blood lead and blood pressure. Epidemiological Rev. 15:352–373.Google Scholar
  21. Hu H., Aro A., Payton M., Korrick S., Sparrow D., Weiss S.T. and Rotnitzky A. (1996). The relationship of bone and blood lead to hypertension. The normative aging study. J. Am. Med. Assoc. 275:1171–1177.CrossRefGoogle Scholar
  22. Hua F. and Boffetta P. (1995). Cancer and occupational exposures to inorganic lead compounds: a meta-analysis of published data. Occup. Environ. Med. 52:73–81.CrossRefGoogle Scholar
  23. Huang C.-C., Chu N.-S., Lu C.-S., Wang J.-D., Tsai J.-L., Wolters E.C. and Calne D.B. (1989). Chronic manganese intoxication. Arch. Neurol. 46:1104–1106.PubMedCrossRefGoogle Scholar
  24. Huang P.L. and Fishman M.C. (1996). Genetic analysis of nitric oxide synthase isoforms: targeted mutations in mice. J. Mol. Med. 74:415–421.PubMedCrossRefGoogle Scholar
  25. IARC (1980). In Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Vol 23. Some Metals and Metallic Compounds. Lyon: IARC.Google Scholar
  26. IARC (1987). In Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Supplement 7. Lyon: IARC.Google Scholar
  27. IARC (1990). In Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Vol 49. Chromium, Nickel and Welding. Lyon: IARC.Google Scholar
  28. IARC (1991). In Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Vol 52. Chlorinated Drinking Water; Chlorination By-Products; some other Haloginated Compounds; Cobalt and Cobalt Compounds. Lyon: IARC.Google Scholar
  29. IARC (1993). In Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Vol 58. Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry. Lyon: IARC.Google Scholar
  30. Jensen A.A. and Tuchsen F. (1990). Cobalt exposure and cancer risk. Crit. Rev. Toxicol. 20:427–437.PubMedCrossRefGoogle Scholar
  31. Kasarkis E.J., Tandon L., Lovell M.A., and Ehmann W.D. (1995). Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J. Neurol. Sci. 130: 203–208.CrossRefGoogle Scholar
  32. Kawamata T., Tooyama I., Yamada T., Walker D.G. and McGeer P.L. (1993). Lacto-transferrin immunocytochemistry in Alzheimer’s and normal human brain. Am. J. Pathol. 142: 1574–1585.PubMedGoogle Scholar
  33. Kazantzis G. (1981). Role of cobalt, iron, lead, manganese, mercury, platinum, selenium and titnium in carcinogenesis. Environ. Health Prespect. 40:143–161.CrossRefGoogle Scholar
  34. Khalil-Manesh F. and Cohen A.H. (1993). Experimental model of lead nephropathy. III. Continuous low-level lead administration. Arch. Environ. Health 48:271–278.PubMedCrossRefGoogle Scholar
  35. Kim R., Rotnitzky A., Sparrow D., Weiss S.W., Wager C. and Hu H. (1996). A longitudinal study of low-level lead exposure and impairment of renal function. The normative aging study. J. Am. Med. Assoc. 275:1177–1181.CrossRefGoogle Scholar
  36. Lockitch G. (1993). Perspectives on lead toxicity. Clin. Biochem. 26:371–381.PubMedCrossRefGoogle Scholar
  37. Malins D.C., Polissar N.L. and Gunselman S.J. (1996a). Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc. Natl. Acad. Sci. USA 93:2557–2563.PubMedCrossRefGoogle Scholar
  38. Malins D.C., Polissar N.L. and Gunselman S.J. (1996b). Tumor rogression to the metastatic state involves structural modification in DNA markedly different from those associated with primary tumor formation. Proc. Natl. Acad. Sci. USA 93:14047–14052.PubMedCrossRefGoogle Scholar
  39. Malins D.C., Polissar N.L. and Gunselman S.J. (1997). Models of DNA structure achieve almost perfect discrimination between normal prostate, benign prostatic hyperplasia (BPH) and adenocarcinoma and have a high potential for predicting BPH and prostate cancer. Proc. Natl. Acad. Sci. USA 94:259–264.PubMedCrossRefGoogle Scholar
  40. Malins D.C., Polissar N.Y., Schaefer S., Su Y. and Vinson M. (1998). A unified theory of carcinogenesis based on order-disorder transitions in DNA structure as studied in the human ovary and breast. Proc. Natl. Acad. Sci. USA. 95:7637–7642.PubMedCrossRefGoogle Scholar
  41. Marco-Feced C. In Encyclopaedia of Occupational Health and Safety. 3rd edition. Vol 2. L. Parmeggiani (ed). International Labor Office, Geneva pp. 1281–1282.Google Scholar
  42. Markesbeny W.R. (1997). Oxidative stress hypothesis in Alzheimer’sdisease. Free Radici Biol. Med. 23: 134–147.CrossRefGoogle Scholar
  43. Martin J.B. and Gusella J.F. (1986) Huntington’s disease: pathogenesis and management. N. Engl. J. Med. 315: 1267–1276.PubMedCrossRefGoogle Scholar
  44. McCarthy P.L. and Shklar G. (1980). In Diseases of the Oral Mucosa. Lea and Febiger, Publishers. Philadelphia PA. pp.470–506.Google Scholar
  45. Miyamoto Y., Akaike T., Yoshida M., Goto S., Horie H. and Maeda H. (1996). Potentiation of nitric oxide mediated vasorelaxation by xanthine oxidase inhibitors. Proc. Soc. Exp. Biol. Med. 211:366–373.PubMedGoogle Scholar
  46. Moncada S., Palmer R.M.J. and Higgs E.A. (1991). Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43:109–142.PubMedGoogle Scholar
  47. Montgomery, Jr. E.B. (1995). Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology 97: 3–9.PubMedCrossRefGoogle Scholar
  48. Multhaup G., Schlicksupp A., Hesse L., Beher D., Ruppert T., Masters C.L. and Beyreuther K. (1996). The amyloid precursor protein of Alzheimer’s disease in the reduction of copper (II) to copper (I). Science 271:1406–1409.PubMedCrossRefGoogle Scholar
  49. Oberdoester G. and Cherian G. (1988). In Biological Monitoring of Toxic Metals. T.W. Clarkson, L. Friberg, G.F. Nordberg and Z.P.R. Saget (eds). Rochester Ser. Environ. Toxicity. Plenum Press, New York. pp. 283–301.Google Scholar
  50. Payton M., Hu H., Sparrow D. and Weiss S.T. (1994). Low-level lead exposure and renal function in the normative aging study. Am. J. Epidemiol. 140:821–829.PubMedGoogle Scholar
  51. Pines J. (1995). Cyclins, CDKs and cancer. Cancer Biol. 6:63–72.CrossRefGoogle Scholar
  52. Pirkle J.L., Schwartz J., Landis J.R. and Harlan W.R. (1985). The relationship between blood lead levels and blood pressure and its cardiovascular risk implications. Am. J. Epidemiol. 121:246–258.PubMedGoogle Scholar
  53. Qian Z.M. and Wang Q. (1998). Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res. Rev. 27: 257–267.PubMedCrossRefGoogle Scholar
  54. Riederer P., Sofic E., Rausch W.-D., Schmidt B., Reynolds G.P., Jellinger K. and Youdim, M.B.H. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J. Neurochem. 52:515–520.PubMedCrossRefGoogle Scholar
  55. Rybicki B.A., Johnson C.C., Uman J. and Gorell J.M. (1993). Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov. Disord. 8: 87–92.PubMedCrossRefGoogle Scholar
  56. Schwartz J. (1995). Lead, blood pressure and cardiovascular disease in men. Arch. Environ. Health 50:31–37.PubMedCrossRefGoogle Scholar
  57. Smith M.A., Perry G., Richey P.L., Sayre, L.M., Anderson, V.E., Beal M.F. and Kowall N. (1996). Oxidative damage in Alzheimer’s. Science, 382:120–121.Google Scholar
  58. Staessen J.A., Lauwerys R.R., Buchet J.P., Bulpitt C.J., Rondia D., Vanrenterghem Y. and Amery A. The Cadmibel Study Group. (1992). Impairment of renal function with increasing blood lead concentrations in the general population. New. Engl. J. Med. 327:151–156.PubMedCrossRefGoogle Scholar
  59. Toyokuni S. (1996). Iron-induced carcinogenesis: the role of redox regulation. Free Radical Biol. Med. 20:553–566.CrossRefGoogle Scholar
  60. Waalkes M.P. (1992). Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Crit. Rev. Toxicol. 22:175–201.PubMedCrossRefGoogle Scholar
  61. Waalkes M.P. and Rhem S. (1994). Cadmium and prostate cancer. J. Toxicol. Environ. Health 43:251–269.PubMedCrossRefGoogle Scholar
  62. Weiss S.T., Munoz A., Stein A., Sparrow D. and Speizer F.E. (1986). The relationship of blood lead to blood pressure in a longitudinal study of working men. Am. J. Epidemiol. 123:800–808.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Maria E. Ariza
    • 1
  • Gautam N. Bijur
    • 2
  • Marshall V. Williams
    • 3
  1. 1.Arizona Cancer CenterUniversity of ArizonaUSA
  2. 2.Behavioral NeurobiologyUniversity of Alabama at BirminghamUK
  3. 3.Department of Medical Microbiology & ImmunologyThe Ohio State UniversityUSA

Personalised recommendations