Skip to main content

High-Drive Current Amplifiers

  • Chapter
  • 302 Accesses

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 499))

Abstract

The current amplifiers described in the previous chapter can profitably be used for on-chip signal processing, but their poor drive capability makes them unsuitable for driving off-chip loads. In these cases, a current amplifier with a class AB output stage is mandatory. To this end, the high-drive current amplifier becomes the natural front-end block for current-mode ICs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Brehmer, J. Wieser, “Large Swing CMOS Power Amplifier,” IEEE J. of Solid-State Circuits, Vol. SC-18, No. 6, pp. 624–629, Dec. 1983.

    Article  Google Scholar 

  2. R. Castello, “CMOS Buffer Amplifier,” in J. Huijsing, R. van der Plassche, W. Sansen (Ed.) Analog Circuit Design, Kluwer Academic Publisher, 1993, pp. 113–138.

    Google Scholar 

  3. P. Gray, R. Meyer, Analysis and Design of Analog Integrated Circuit (III Ed), Wiley & Sons, 1993.

    Google Scholar 

  4. G. Caiulo, F. Maloberti, G. Palmisano, S. Portaluri, “Video CMOS Power Buffer with Extended Linearity,” IEEE J. of Solid-State Circuits, Vol. 28, No. 7, pp. 845–848, July 1993.

    Article  Google Scholar 

  5. F. Eynde, W. Sansen, Analog Interfaces for Digital Signal Processing Systems, Kluwer Academic Publisher, 1993.

    Book  Google Scholar 

  6. P. Crawley, G. Roberts, “High-Swing MOS Current Mirror with Arbitrarily High Output Resistance,” Electronics Letters, Vol. 28, No. 4, pp. 361–363, February 1992.

    Article  Google Scholar 

  7. E. Bruun, P. Shah, “Dynamic Range of Low-Voltage Cascode Current Mirrors,” Proc. IEEE ISCAS’95, pp. 1328–1331, Seattle, May 1995.

    Google Scholar 

  8. G. Palmisano, G. Palumbo, S. Pennisi, “High Linearity CMOS Current Output Stage,” Electronics Letters, Vol. 31, No. 10, pp. 789–790, May 1994.

    Article  Google Scholar 

  9. J. Shyu, G. Temes, F. Krummenacher, “Random Error Effects in Matched MOS Capacitors and Current Sources,” IEEE J. of Solid-State Circuits, Vol. SC-19, No. 6, pp. 948–955, Dec. 1984.

    Article  Google Scholar 

  10. K. Lakshmikumar, R. Hadaway, M. Copeland, “Characterization and Modeling of Mismatch in MOS Transistors for Precision Analog Design,” IEEE J. of Solid-State Circuits, Vol. SC-21, No. 6, pp. 1057–1066, Dec. 1986.

    Article  Google Scholar 

  11. M. Pelgrom, A. Duinmaijer, A. Welbers, “Matching Properties of MOS Transistors,” IEEE J. of Solid-State Circuits, Vol. 24, No. 5, pp. 1433–1440, Dec. 1989.

    Article  Google Scholar 

  12. G. Palmisano, G. Palumbo, S. Pennisi, “A CMOS Operational Floating Conveyor,” Proc. IEEE Midwest’94, Lafayette, Aug. 1994.

    Google Scholar 

  13. G. Palmisano, G. Palumbo, S. Pennisi, “Class AB CMOS Current Output Stages with Reduced Harmonic Distortion,” IEEE Trans. on Circuits and Systems — part II vol. 45, no.2, pp. 243–250, Feb. 1998.

    Article  Google Scholar 

  14. K. Bult, G. Geelen, “A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain,” IEEE J. of Solid-State Circuits, Vol. 25, No. 6, pp. 1379–1384, Dec. 1990.

    Article  Google Scholar 

  15. K. Bult, G. Geelen, “The CMOS Gain-Boosting Technique,” Int. J. Analog Integrated Circuits and Signal Processing, No. 1, pp. 119–135, 1991.

    Google Scholar 

  16. J. Lloyd, Hae-Seung Lee, “A CMOS Op Amp with Fully-Differential Gain-Enhancement,” IEEE Trans. on Circuits and Systems — part II, Vol. 41, No. 3, pp. 241–243, March 1994.

    Article  Google Scholar 

  17. Y. Tsividis, D. Fraser, “Harmonie Distortion in Single-Channel MOS Integrated Circuits,” IEEE J. of Solid-State Circuits, Vol. SC-16, No. 6, pp. 694–702, Dec. 1981.

    Article  Google Scholar 

  18. E. Fong, R. Zeman, “Analysis of Harmonic Distortion in Single-Channel MOS Integrated Circuits,” IEEE J. of Solid-State Circuits, Vol. SC-17, No. 1, pp. 83–86, Feb. 1982.

    Article  Google Scholar 

  19. B. Wu, J. Mavor, “Distortion in CMOS Operational Amplifier Circuits,” IEE Proc. Part G, Vol.131, No. 4, pp. 129–134, Aug. 1994.

    Google Scholar 

  20. M. Abuelma’Atti, “Harmonic Performance of Single-Channel MOS Integrated Circuits,” IEEE J. of Solid-State Circuits, Vol. SC-20, No. 4, pp. 860–864, Aug. 1985.

    Article  Google Scholar 

  21. M. Thoma, W. Baumann, C. Westgate, “A Method to Predict Harmonic Distorsion in Small-Geometry MOS Analog Integrated Circuits,” IEEE J. of Solid-State Circuits, Vol. SC-22, No. 1, pp. 106–109, Feb. 1987.

    Article  Google Scholar 

  22. D. Pederson, K. Mayaram, Analog Integrated Circuits for Communication (Principles, Simulation and Design), Kluwer Academic Publisher, 1991.

    MATH  Google Scholar 

  23. E. Bruun, “Worst case estimate of mismatch induced distortion in complementary CMOS current mirrors,” Electronics Letters, Vol. 34, pp. 1625–27, Aug. 1998.

    Article  Google Scholar 

  24. G. Palmisano, G. Palumbo, S. Pennisi, “High-Drive CMOS Current Amplifier”, IEEE J. of Solid-State Circuits, Vol. 33, No.2, pp. 228–236, Feb. 1998

    Article  Google Scholar 

  25. G. Palmisano, G. Palumbo, S. Pennisi, “A High-Drive High-Gain CMOS Current Operational Amplifier”, Proc. IEEE ISCAS’98, Monterey, May 1998.

    Google Scholar 

  26. P. Li, M. Chin, P. Gray, R. Castello, “A Ratio-Independent Algorithmic Analog-to-Digital Conversion Technique,” IEEE J. of Solid-State Circuits, Vol. SC-19, No. 6, pp. 828–836, Dec. 1984.

    Article  Google Scholar 

  27. R. Castello, P. Gray, “A High-Performance Micropower Switched-Capacitor Filter,” IEEE J of Solid-State Circuits, Vol. SC-20, No. 6, pp. 1122–1132, Dec. 1985.

    Article  Google Scholar 

  28. C. Wang, R. Castello, P. Gray, “A Scalable High-Performance Switched-Capacitor Filter,” IEEE J. of Solid-State Circuits, Vol. SC-21, No. 1, pp. 57–64, Feb. 1986.

    Article  Google Scholar 

  29. E. Seevinck, R. F. Wassenaar, “A Versatile CMOS Linear Transconductor/Square-law Function Circuit,” IEEE J. of Solid-State Circuits, Vol. SC-22, pp. 366–377, June 1987.

    Article  Google Scholar 

  30. F. Maloberti, G. Palmisano, L. Sforzini, G. Gazzoli, “Fully differential CMOS power amplifier”. U.S. Patent: n° 5,281,924, Jan. 25, 1994.

    Google Scholar 

  31. G. Palmisano, G. Palumbo, S. Pennisi, “A Novel CMOS Current-Mode Power Amplifier”, 2nd IEEE CAS Region 8 Workshop on Analog and Mixed Design, pp. 83–86, Baveno, Sept. 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palmisano, G., Palumbo, G., Pennisi, S. (1999). High-Drive Current Amplifiers. In: CMOS Current Amplifiers. The Springer International Series in Engineering and Computer Science, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5135-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5135-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7337-7

  • Online ISBN: 978-1-4615-5135-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics