Skip to main content

Part of the book series: Endocrine Updates ((ENDO,volume 3))

Abstract

Practitioners of clinical medicine in the Western World, whether primary care providers or subspecialists, are seeing more and more patients with osteoporosis. We propose two central explanations for this reality. As stated in the introductory chapter of this text, the first reason is that low bone mineral density (BMD) and resultant skeletal fragility is becoming more prevalent in our aging society. Using only dual energy x-ray absorptiometry (DEXA) measurements of femoral BMD from the third National Health and Nutrition Examination Survey (NHANES III, 1988–1994), the prevalence of osteoporosis (defined by the [WHO] as BMD>2.5 standard deviations [SD] below the mean of young, nonhispanic white females at peak bone mass) in women 50 years and older in the United States is 13-18% of the population or 4–6 million women (1). The prevalence of osteopenia (BMD>1.0 SD below peak bone mass) ranges from 37–50% of this population or 13–17 million women in the >50 age group (1). Furthermore, the percentage of currently osteopenic patients who will develop osteoporosis is projected to increase at a rate of 2% per year well into the 21rst century (2) if we do nothing to prolong the onset of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Looker AC, Orwoll ES, Johnston CC Jr., Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP 1997 Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12(11): 1761–1768.

    Article  PubMed  CAS  Google Scholar 

  2. Ray NF, Chan JK, Thamer M, Melton III LJ 1997 Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res12(1): 24–35.

    Article  PubMed  CAS  Google Scholar 

  3. Epstein RS, Sherwood LM 1996 From outcomes research to disease management: a guide for the perplexed. Ann Int Med 124(9): 838–842.

    Google Scholar 

  4. Liberman UA, Weiss SR, Broil J, Minne HW, Quan H, Bell NH, Rodriquez-Portales J, Downs RW Jr., Dequeker J, Favus M, Seeman E, Recker RR, Capizzi T, Santora AC II, Lombardi A, Shah RV, Hirsch LJ, Karpf DB 1995 Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 22: 1437–1443.

    Article  Google Scholar 

  5. Matkovic V, Jelic T, Wardlaw GM, Llich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP 1994 Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. J Clin Invest 93: 799–808.

    Article  PubMed  CAS  Google Scholar 

  6. Teegarden D, Proulx WR, Martin BR, Zhao J, McCabe GP, Lyle RM, Peacock M, Slemenda C, Johnston CC, Weaver CM 1995 Peak bone mass in young women. J Bone Miner Res. 10: 711–715.

    Article  PubMed  CAS  Google Scholar 

  7. King MC. 1997 Leaving Kansas…finding genes in 1997. Nat Genetics 15: 8–11.

    Article  CAS  Google Scholar 

  8. Cummings SR, Black D 1995 Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 98(suppl 2A): 24–28.

    Article  Google Scholar 

  9. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr 1991 Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6: 561–567.

    Article  PubMed  CAS  Google Scholar 

  10. Henderson LB, Scheuner MT, Goldstein DR, Martin L, Adams J, Rotter JI 1997 Emperic risk estimates for osteoporosis. J Invest Med 45: 94A.

    Google Scholar 

  11. Slemenda CW, Turner CH, Peacock M, Christian JC, Sorbel J, Hui SL, Johnston CC 1996 The genetics of proximal femur geometry, distribution of bone mass and bone mineral density. Osteoporosis Int 6: 178–182.

    Article  CAS  Google Scholar 

  12. Econs MJ, Speer MC 1996 Genetic studies of complex diseases: let the reader beware. J Bone Miner Res 11(12): 1835–1839.

    PubMed  CAS  Google Scholar 

  13. Ralston SH 1997 The genetics of osteoporosis. Oxford Univ Press 90: 247–251.

    CAS  Google Scholar 

  14. Hustmeyer FG, Peacock M, Hui S, Johnston CC, Christian J 1994 Bone mineral density in relation to polymorphism at the vitamin D receptor gene locus. J Clin Invest 94: 2130–2134.

    Article  Google Scholar 

  15. Peacock M 1995 Vitamin D receptor genes alleles and osteoporosis: a contrasting view. J Bone Miner Res 10: 1294–1297.

    Article  PubMed  CAS  Google Scholar 

  16. Cooper GS, Umbach DM 1996 Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res 11(12): 1841–1849.

    Article  PubMed  CAS  Google Scholar 

  17. Haseltine WA 1997 Discovering genes for new medicines. Scient Am 92–97.

    Google Scholar 

  18. Drake FH, Dodds RA, James, IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M 1996 Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human ospteoclasts. J Biol Chem 271: 12511–12516.

    Article  PubMed  CAS  Google Scholar 

  19. Gilsanz V, Kovanlinkaya A, Costin G, Roe TF, Sayre J, Kaufman F 1997 Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 82: 1603–1607.

    Article  PubMed  CAS  Google Scholar 

  20. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RR 1997 Linkage of a gene causing high bone mass to human chromosome 11 (1 Iql2-13). Am J Hum Genet 60: 1326–1332.

    Article  PubMed  CAS  Google Scholar 

  21. Rosen CJ, Dimai HP, Vereault D, Donahue LR, Beamer WG, Farley J, Linkhart S, Linkhart T, Mohan S, Baylink DJ 1997 Circulating and skeletal insulin-like growth factor-I (IGF-I) concentrations in two inbred strains of mice with different bone mineral densities. Bone 21: 217–223.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adams, J.S. (1999). Genetics of Osteoporosis. In: Adams, J.S., Lukert, B.P. (eds) Osteoporosis: Genetics, Prevention and Treatment. Endocrine Updates, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5115-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5115-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7327-8

  • Online ISBN: 978-1-4615-5115-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics